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Introduction

Still less is our essay intended as a
textbook of the Glass Bead Game;
indeed, no such thing will ever be
written. The only way to learn the
rules of this Game of games is to
take the usual prescribed course,
which requires many years; and
none of the initiates could ever pos-
sibly have any interest in making
these rules easier to learn.

— Hermann Hesse (1877–1962),
The Glass Bead Game (1943)

We may always depend upon it that
algebra which cannot be translated
into good English and sound com-
mon sense is bad algebra.

— William Kingdon Clifford
(1845–1879),

The Common Sense of the Exact
Sciences (1886) 21

These are the lecture notes for MA267 Groups and Rings, an in-
troductory abstract algebra module primarily for second-year

undergraduate students on joint mathematical degree programmes
at the University of Warwick.

Organisation

Module leader Dr Nicholas Jackson <Nicholas.Jackson@warwick.ac.uk>

Zeeman B0.09, Economics S0.84

Pudding (honorary assistant module leader)

Assistants Edison Au-Yeung, Alexandros Groutides

Credit 10 CATS

Assessment One 2–hour examination in April (85%)
Best three of four written assignments (15%)

Lectures Monday 3pm–4pm: L5 (weeks 1–10)
Tuesday 3pm–4pm: Chancellors 1 (weeks 1, 4–10),

GLT2 (weeks 2, 3)
Thursday 2pm-3pm: L5 (weeks 1–10)

Classes Monday 2pm–3pm: MB0.08 (weeks 2–10)
Tuesday 5pm–6pm: Zeeman B3.02 (weeks 2–10)

Content and learning objectives

This is an introductory abstract algebra module. As the title sug-
gests, the two main objects of study are groups and rings. A group
is a set with one binary operation; examples include the additive
group of integers, groups of permutations, and groups of nonsingu-
lar matrices. Rings are sets with two binary operations, analogous
to addition and multiplication. The most familiar example is the
ring of integers with the usual addition and multiplication opera-
tions, and others include rings of polynomials, and rings of square
matrices.
This module will assume no prior knowledge of group or ring
theory, but students who have previously taken MA151 Algebra 1 or
similar will have met some of the basic concepts already.
We will assume some basic knowledge of the following topics (from
MA138 Sets and Numbers or elsewhere):



vi

Number theory congruence modulo–n, prime factorisation, the
Euclidean algorithm, greatest common divisors (gcd) and least
common multiples (lcm).

Sets and functions basic set theory and notation, injective and sur-
jective functions, equivalence relations.

Polynomials multiplication and division, the Euclidean algorithm,
the Remainder Theorem.

The topics we will cover include:

Group theory Basic definitions and properties of groups, subgroups
and homomorphisms. Cosets and Lagrange’s Theorem. Normal
subgroups and quotient groups. Cyclic groups, permutation
groups, dihedral groups. Isomorphism theorems. Group actions,
orbits and stabilisers, conjugacy classes, simple groups. Classifi-
cation of finitely-generated abelian groups.

Ring theory Basic definitions and properties of rings, subrings and
homomorphisms. Ideals and quotient rings. Integral domains, Eu-
clidean domains, Principal Ideal Domains (PIDs), Unique Factori-
sation Domains (UFDs). Prime and irreducible elements. Fields.
Polynomial rings.

By the end of the module, the student should have a good working
knowledge of the basic concepts of group theory and ring theory,
and be familiar with a number of standard theorems and techniques.

Assessment

The assessment for this module consists of the following:
Assignments Four assignments, with deadlines in weeks 3, 5, 7

and 9 of term 1. The best three marks will together comprise 15%
of the overall mark for the module.

Exam One two-hour exam, early in term 3, consisting of one com-
pulsory question (worth 40 marks) and two optional questions
(worth 20 marks) from a choice of three, giving a total mark out
of 80. The exam will comprise the remaining 85% of the overall
mark for the module.

Synergies and further study

This module works well alongside the following other modules:
• MA243 Geometry
• MA257 Introduction to Number Theory
• MA266 Multilinear Algebra
This module provides useful background or assumed knowledge
for the following modules:

• MA257 Introduction to Number
Theory

• MA3E1 Groups and Representa-
tions

• MA3G6 Commutative Algebra
• MA3J9 Historical Challenges in

Mathematics
• MA377 Rings and Modules



vii

• MA3F1 Introduction to Topology
• MA3K4 Introduction to Group

Theory
• MA3J3 Bifurcations, Catastro-

phes and Symmetry
• MA3D5 Galois Theory
• MA3H6 Algebraic Topology
• MA3J2 Combinatorics II
• MA3A6 Algebraic Number The-

ory

• MA4L6 Analytic Number Theory
• MA4H4 Geometric Group Theory
• MA426 Elliptic Curves
• MA473 Reflection Groups
• MA453 Lie Algebras
• MA4J8 Commutative Algebra II
• MA4M6 Category Theory

Further reading

These notes contain all the material covered in this module, but you
may find it helpful to consult one or more of the following books:
• Lara Alcock, How to Think About Abstract Algebra, Oxford Univer-

sity Press (2021)
• M. A. Armstrong, Groups and Symmetry, Undergraduate Texts in

Mathematics, Springer (1988)
• John B. Fraleigh, A First Course in Abstract Algebra, 8th edition,

Pearson (2020)
• Joseph Gallian, Contemporary Abstract Algebra, 10th edition, CRC

Press (2021)
• Nicholas Jackson, A Course in Abstract Algebra, Oxford University

Press (forthcoming)





1 Groups

However, there is a pleasure in rec-
ognizing old things from a new
point of view. Also, there are prob-
lems for which the new point of
view offers a distinct advantage.

— Richard Feynman (1918–1988),
Space-time approach to non-relativistic

quantum mechanics, Reviews of
Modern Physics 20 (1948) 367–387

Much of modern mathematics concerns the study of different
kinds of structures attached to sets. For example, in linear

algebra we study vector spaces: sets of “vectors” equipped with
“vector addition” and “scalar multiplication” operations. In topology
we study metric spaces (sets with some well-defined notion of
distance between given elements) and topological spaces (sets with
designated families of “open subsets”).1 1 Considering such objects in generality

leads to a branch of mathematics called
category theory, which is beyond the
scope of this module. Sometimes gen-
tly derided as “generalised abstract non-
sense”, it has proved to be a very pow-
erful approach that has enabled major
developments not just in mathematics,
but also in other fields such as theoret-
ical computer science. The basic idea
is that a category consists of a class of
objects and, for each ordered pair of
objects, a set of morphisms, satisfying
a few simple axioms. So the category
Set comprises sets and functions map-
ping between them, while the category
VectK consists of vector spaces over a
field K with linear maps between them.
Where this becomes particularly useful
is when we start looking at functors:
structure-preserving maps from one cat-
egory to another. This enables us to
translate one sort of mathematical prob-
lem into another, which might be easier
to solve. If you take MA3F1 Introduction
to Topology next year, you’ll meet some-
thing called the fundamental group of
a topological space, which is a functor
π1 : Top∗ → Group from the category of
based topological spaces to the category
of groups. It’s essentially a machine for
turning a possibly difficult problem in
topology into an analogous problem in
group theory that’s hopefully easier to
solve.

In abstract algebra we are concerned with sets which have some
kind of generalised multiplication and/or addition operations. In
this module we will investigate two very important objects: groups
and rings.

1.1 Definitions and elementary properties

We’ll use the integers Z as our motivating example for both of these
concepts. From a very early age we learn how to add and multiply
integers together. Leaving multiplication aside for the moment,
we notice that there are five basic properties that integer addition
satisfies, for any integers a, b, c ∈ Z.
(i) If we add two integers together, we get an integer. That is,

a+b ∈ Z. We say Z is closed under addition.
(ii) The order doesn’t matter: we get the same answer either

way round. That is, a+b = b+a. We say integer addition is
commutative.

(iii) Parentheses don’t matter when we’re adding three or more
integers together. That is, (a+b)+c = a+(b+c). We say
integer addition is associative.

(iv) There is a special integer, zero, that doesn’t change anything
we add it to. That is, a+0 = a = 0+a. We call this the
(additive) identity.

(v) Every integer has a corresponding negative partner. That is,
for any a ∈ Z there exists −a ∈ Z such that a+(−a) = 0 =
(−a)+a. We call −a the (additive) inverse of a.

We want to generalise this idea to an arbitrary (finite or infinite) set,
and see what other familiar situations have a similar structure.
What does addition do? It’s an operation that takes an ordered
pair of elements of our chosen set Z and gives us a single element
of Z in return. It’s effectively a function f : Z → Z defined by
f (a, b) = a+b. We give a function of this sort a special name:
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Definition 1.1 Let S be a set. Then a binary operation on S is a
function f : S×S → S.

For notational reasons, we will usually write a binary operation not
as a function, but as an operator placed between the two arguments:
so, for example a∗b instead of f (a, b). In particular, this makes the
commutativity and associativity conditions neater:

a ∗ b = b ∗ a and (a ∗ b) ∗ c = a ∗ (b ∗ c)

Although many of the objects we want to study will satisfy the com-
mutativity condition, it turns out that many interesting examples
don’t, so we’ll leave that one as optional for now. But we’ll require
associativity. We’ll also require the existence of inverse elements,
and an identity element.2 This leads us to the following definition:3

2 There are less restrictive variants of this
structure, which we won’t cover in this
module. A set S with a binary operation
∗ is called a magma. A magma whose
operation is associative is called a semi-
group, and a semigroup with an identity
is called a monoid. A group can thus
be thought of as a monoid where every
element is invertible.

3 Some books list the closure require-
ment as an additional criterion in the
definition. For example:
(G0) The set G is closed under the op-

eration ∗; that is,

g ∗ h ∈ G

for all g, h ∈ G
but in our case this is automatically sat-
isfied as part of the way we’ve defined
a binary operation.

Definition 1.2 A group G = (G, ∗) comprises a set G together
with a binary operation ∗ : G×G → G, such that:
(G1) The binary operation ∗ is associative; that is,

g ∗ (h ∗ k) = (g ∗ h) ∗ k

for all g, h, k ∈ G.
(G2) There exists an element e ∈ G, the identity (or neutral

element), such that

g ∗ e = g = e ∗ g

for all g ∈ G.
(G3) For every g ∈ G there exists an element g−1 ∈ G, the

inverse of g, such that

g ∗ g−1 = e = g−1 ∗ g.

Niels Henrik Abel (1802–1829)

Although we decided not to include the commutativity requirement
by default, groups which do satisfy this property form an important
subclass which we will study in depth. They are named after the
early 19th century Norwegian mathematician Niels Henrik Abel,
one of the pioneers of group theory.

Definition 1.3 A group G = (G, ∗) is said to be abelian if:
(G4) The operation ∗ is commutative; that is, g ∗ h = h ∗ g for all

g, h ∈ G.

Sometimes we will want to discuss the size of a group:44 Infinity is a tricky concept, and some-
times we might want to make a dis-
tinction between countable infinite sets,
such as N, Z and Q, and uncountable
infinite sets, such as R and C.

Definition 1.4 Let G be a group. Then the order of G, denoted
|G| is the number of elements in G. This may be finite or infinite.

Time for some examples. The first is our original example:

Example 1.5 The set Z of integers forms an abelian group under
the usual addition operation.
Similarly, the sets Q of rational numbers, R of real numbers
and C of complex numbers also form abelian groups under the
corresponding addition operations.

The nonzero elements of the latter three examples above also form
groups under multiplication.55 But Z doesn’t. Why not?
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Example 1.6 Let K be one of the sets Q, R or C, and let K∗ =
K \ {0}. Then K∗ forms a group under multiplcation.

The next example comes from modulo–n arithmetic, and yields an
important class of groups that we’ll study further later.

Example 1.7 Let Zn = {0, 1, 2, . . . , n−1} be the set consisting of
the first n non-negative integers, for some positive integer n. Then
let + : Zn×Zn → Zn be the operation of addition modulo n; that
is, given any a, b ∈ Zn, define a+b to be the remainder of the sum
a+b ∈ Z after division by n.
Then Zn = (Zn,+) is the cyclic group of order n.

Can we form a group from Zn using modulo–n multiplication in-
stead of addition? Well, the problem we run into is that a given
element of Zn isn’t guaranteed to have a modulo–n multiplicative in-
verse. And zero certainly doesn’t. But we can define a multiplicative
group structure on some appropriate subset of Zn:

Example 1.8 Let

Un = {m ∈ Zn : gcd(m, n) = 1}.

This set forms a group under multiplication modulo n, and we
call it the group of units modulo n.

As an exercise, prove that Un does form a group. Use the extended
Euclidean Algorithm, from MA132 Foundations or MA138 Sets and
Numbers.
These examples are groups of numbers, but we can form groups
from other mathematical objects as well. In a little while, we will
meet classes of groups formed from symmetry operations on ge-
ometric objects, and groups formed from permutations on sets.
For the moment, however, we will look at some important groups
formed from matrices:
Example 1.9 For any integers m, n > 0 we can define Mm×n(R)
or Rm×n to be the set of m×n matrices with entries in K. This set
forms a group under the usual matrix addition operation: matrix
addition is associative, the zero matrix serves as the required
identity element, and for any m×n matrix A there is an additive
inverse −A.

All of these examples so far are abelian: their operation is commu-
tative. But matrix multiplication isn’t commutative, and that yields
a number of other interesting matrix groups:

Example 1.10 Denote by GLn(R) or GL(n, R) the set of n×n
invertible matrices with real entries. Equivalently, this is the set
of n×n real matrices with nonzero determinant. This set forms a
group (the general linear group) under matrix multiplication.

Example 1.11 Let SLn(R) or SL(n, R) denote the set of n×n
invertible real matrices with determinant equal to 1. This set also
forms a group (the special linear group) under ordinary matrix
multiplication.
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Example 1.12 Let On(R) or O(n, R) be the set of n×n real orthog-
onal matrices. (That is, matrices m such that MT M = I = MMT,
or equivalently that M−1 = MT.) This set forms the orthogonal
group under matrix multiplication.
Similarly, let SOn(R) or SO(n, R) be the set of n×n orthogonal
matrices with determinant equal to 1. This forms the special
orthogonal group under ordinary matrix multiplication.

Arthur Cayley (1821–1895)

We can generalise all of these matrix groups to other scalar fields
such as Q or C. Except when n = 1, the multiplicative groups
GLn(R), SLn(R), On(R) and SOn(R) are not abelian.
But what do these groups actually look like? Well, one way of
displaying the group structure, at least of relatively small groups, is
to write down the multiplication table or Cayley table. This is the
same idea as an ordinary multiplication table that we learn about
in primary school, except that we use the given group operation
instead of ordinary multiplication. Table 1.1 shows the multiplica-
tion table (or in this case, perhaps the addition table) for the cyclic
group Z4. We can’t do this for larger groups or infinite groups,
so much of the rest of this module will be concerned with finding
different methods to understand these structures.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Table 1.1: Cayley table for the cyclic
group Z4

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 1.2: Cayley table for the Klein
group V4

Another simple but important example is named after the German
mathematician Felix Klein:

Felix Klein (1849–1925)

Example 1.13 Let
V4 = {e, a, b, c}

and define a group structure on V4 as follows:
(i) Let e be the identity element.
(ii) Let a ∗ a = b ∗ b = c ∗ c = e.
(iii) Let a ∗ b = b ∗ a = c.
There is a unique group structure determined by these conditions,
and its multiplication table is shown in Table 1.2.
This group is called the Klein group, the Klein 4–group, or the
Viergruppe. As an exercise convince yourself that it is indeed an
abelian group.

Something that we should really address before we go any further
is the question of notation. In almost all the examples we’ve seen so
far, the group operation was either “addition” or “multiplication”.
In fact, we will almost always write group operations using either
additive or multiplicative notation (rather than using a symbol like
∗ as in Definition 1.2), even if the operation isn’t called addition or
multiplication.
The two notations we will mostly use are:
Multiplicative groups where we omit the sign representing the

operation (so g∗h becomes gh), we denote the identity element
by 1, and the inverse of an element g by g−1.

Additive groups where we represent the operation by +, the iden-
tity element by 0, and the inverse of an element g by −g.

Sometimes we might find ourselves discussing more than one group
at a time, and may need to distinguish between the identity elements
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of two different groups G and H, say. If so, we will denote them by
1G and 1H (or 0G and 0H).
We will adopt the convention that additive notation will only be
used for abelian groups; that is, any operation we denote by + may
be assumed to be commutative. Multiplicative notation, however,
may be used both for abelian and for nonabelian groups. By default
we will use multiplicative notation.
Now it’s time to prove some basic properties of groups. These all
follow from Definition 1.2.
First, we will prove the Cancellation Law:

Proposition 1.14 (Cancellation Law) Let G be a group, and suppose
that g, h, k ∈ G.
(i) If gh = gk then h = k, and
(ii) if hg = kg then h = k.

Proof To prove part (i), suppose that gh = gk. Then multiplying on
the left by g−1 we have g−1(gh) = g−1(gk), and by the associativity
condition this is equivalent to (g−1g)h = (g−1g)k, so 1h = 1k and
hence h = k as claimed.
Part (ii) can be proved by multiplying on the right by g−1.

This works precisely because every element in a group has an
inverse.
So far, we’ve talked about the identity element of a group, and the
inverse of a given element, quietly glossing over the possibility that
these might not always be unique. We’ll justify ourselves now:

Lemma 1.15 Let G be a group. Then G has a unique identity element
1, and each g in G has a unique inverse g−1. That is:
(i) Suppose that e ∈ G such that eg = g for all g ∈ G (that is, e is a

left identity element), then e = 1.
(ii) Given g ∈ G, if there exists some element h ∈ G such that hg = 1

(that is, h is a left inverse of g) then h = g−1.

The group axioms say that a group G has an identity element 1, and
every element g ∈ G has an inverse g−1. This lemma says that any
other element that behaves like an identity is actually equal to 1
itself, and any other element that behaves like the inverse of g must
actually be equal to g−1 itself.

Proof
(i) Because e is a left identity element, we have e1 = 1. And

because 1 is a two-sided identity element, we also have e1 = e.
Putting these together, we see that e = e1 = 1.

(ii) Because h is a left inverse of g, we have hg = 1. And because
g−1 is a two-sided inverse of g, we have gg−1 = 1. Combining
these, we have

h = h1 = h(gg−1) = (hg)g−1 = 1g−1 = g−1.

Hence every group has a unique identity element, and every element
has a unique inverse.
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Lemma 1.16 Suppose that g and h are arbitrary elements of some
group G. Then

(gh)−1 = h−1g−1.

Proof We can check this by means of the following calculation:

(h−1g−1)(gh) = h−1(g−1(gh)) = h−1(g−1g)h−1

= h1h−1 = hh−1 = 1.

Thus h−1g−1 is a left inverse of gh. We can either prove it is also a
right inverse by a similar calculation, or we can appeal to part (ii)
of Lemma 1.15. Either way, the result follows.

In a multiplicative group, we’ll define g2 = gg, g3 = gg2 = ggg,
and so on. Formally, for n ∈ N we define gn inductively by

g1 = g and gn+1 = ggn.

We also define g0 to be the identity element 1, and g−n = (gn)−1 =
(g−1)n to be the inverse of gn. Then we have

gm+n = gmgn

for all m, n ∈ Z.
In an additive group, we replace gn with ng = g + · · ·+ g, and g−n

with (−n)g = −(ng) = n(−g).
Looking at the Klein group in Example 1.13, we see that multiplying
any of the elements a, b or c by itself yields the identity element e.
In other words, a2 = b2 = c2 = e. One consequence of this is that
each of these elements is equal to its own inverse.66 Elements with this self-inverse prop-

erty are sometimes called involutory.
In the group Z4, whose Cayley table is shown in Table 1.1, we can
combine the element 2 with itself to get 2+42 = 0. But we have to
add four copies of the element 1 together to get 0, and the same
goes for 3. And in the additive group Z, there are no nonzero
elements which can be added to each other a finite number of times
to get the identity element 0.
Let’s formalise all this with a definition:77 As sometimes happens in mathematics,

we’ve used the same word to mean two
different things. In this case, recall that
the order of a group G is the cardinality
(or, if finite, the number of elements)
of G. But the order of an element of G
means something different.

Definition 1.17 Let g ∈ G be an element of some group G. The
order of g, denoted |g|, is the smallest positive integer n such that

gn = g · · · g = 1

(if G is a multiplicative group) or

ng = g + · · ·+ g = 0

(if G is an additive group).
If no such finite integer exists, then we say g has infinite order.

So, for example, in the Klein group V4 we have |e| = 1 and |a| =
|b| = |c| = 2. And in the cyclic group Z4 we have |0| = 1, while
|2| = 2 and |1| = |3| = 4.
This gives us a big clue that although V4 and Z4 have the same
number of elements (that is, |V4| = |Z4| = 4) they have different
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internal structures. We’ll look into this idea further in a little while,
but first we’ll prove a couple of very basic results about the order of
group elements:

Lemma 1.18 Let g be an element of a group G. Then |g| = 1 if and
only if g = 1.

Proof If g = 1 then we have g1 = g = 1, and there is no smaller
k ∈ N such that gk = 1.
Conversely, if |g| = 1 then g1 = 1, but g1 = g by definition, and
hence g = 1.

Lemma 1.19 Let g be an element of a group G with |g| = n. Then
|g| = |g−1|.

Proof Since |g| = n, we have gn = 1, and n is the smallest positive
integer with this property. Then (g−1)n = (gn)−1 = 1−1 = 1.
Furthermore if 0 < k < n such that (g−1)k = 1, then this means that
(gk)−1 = 1, and hence gk = 1. This contradicts the hypothesis that
|g| = n, so it must be the case that |g−1| = n.

Lemma 1.20 Let g be an element of a group G with |g| = n. Then
gk = 1 if and only if n|k.

Proof If n|k then there exists some m ∈ N such that k = mn. Then

gk = gmn = (gn)m = 1m = 1.

Conversely, suppose that gk = 1. By Euclid’s Division Theorem,8 8 This was covered in MA138 Sets and
Numbers and MA132 Foundations, but
if you’ve not seen it before, or need a
reminder, here it is:

Theorem 1.21 (Division Theorem)
Let a, b ∈ N. Then there exist unique
integers q, r ∈ Z such that

a = qb + r

with 0 ⩽ r < b.

we know that if |k| > n then there exist integers q, r such that

k = qn + r and 0 ⩽ r < n.

Then we have

gk = gqn+r = gqngr = (gn)qgr = 1qgr = gr

But gk = 1, so this implies that gr = 1, and since r < n, which is the
smallest positive integer such that gn = 1, it must be the case that
r = 0. Hence k = qn, and so n|k as claimed.

Euclid of Alexandria (fl. 300 BC)
detail from The School of Athens by
Raphael (1483–1520)

1.2 Structural equivalence

A little while ago we remarked that the Klein group V4 and the
cyclic group Z4 have the same number of elements, but there were
differences in the internal structure of each group. In particular, Z4
has two elements of order 4, but every element of V4 (apart from
the identity e) has order 2.
There certainly exist bijections between V4 and Z4, because they
both have the same number of elements. But that’s not enough
for us: we want to compare the structures as well. And the order
of individual elements is a fundamental aspect of that structure.
Ultimately, we’re looking for bijections between groups that in some
way preserve this structure. We’ll get to that soon, but first we’ll
look at another example.
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Example 1.22 Let G = {1, ω, ω2}, where ω = −1
2 +

√
3

2 i. This
forms a group under multiplication, which has Cayley table shown
in Table 1.3.
Now let H = {I, A, B} where

I =
[

1 0
0 1

]
, A =

1
2

[
−1 −

√
3√

3 −1

]
, B =

1
2

[
−1

√
3

−
√

3 −1

]
.

This forms a group under matrix multiplication, with the Cayley
table shown in Table 1.4
Compare this with the Cayley table for Z3 in Table 1.5. We can
see that apart from some simple relabelling, these groups all have
essentially the same structure, and on some level we can view
them all as different representatives of the “same” group.

1 ω ω2

1 1 ω ω2

ω ω ω2 1
ω2 ω2 1 ω

Table 1.3: Cayley table for the group G
in Example 1.22

· I A B
I I A B
A A B I
B B I A

Table 1.4: Cayley table for the group H
in Example 1.22

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Table 1.5: Cayley table for the cyclic
group Z3

We want some notion of equivalence between groups that recognises
and preserves the actual structure, while being pretty much agnostic
about the specific form of the groups in question. As in Example 1.22

we want to recognise the way the elements of the groups interact,
while not really caring particularly whether those elements are
integers, complex numbers or matrices.
The key idea, as remarked earlier, is that we want a bijective func-
tion9 between groups that in some way respects the group structure.9 You should hopefully have met injec-

tive, surjective and bijective functions
before, but in case you haven’t (or need
a reminder), here’s the definition:

Definition 1.23 Let f : A → B be a
function mapping from a set A (the
domain) to a set B (the codomain).
We say that f is injective or one-one
if, for any elements x, y ∈ A, we have
f (x) = f (y) only when x = y.
We say that f is surjective or onto if,
for any element b ∈ B there exists an
element a ∈ A such that f (a) = b.
And we say that f is bijective (or a
bijection) if it is both injective and
surjective.

Equivalently, if f : A → B is injective,
then every element of B is mapped to
by at most one element of A. Distinct
elements of A are mapped to distinct
elements of B.
And if f : A → B is surjective, then every
element of B is mapped to by at least one
element of A.

Definition 1.24 Two groups G and H are said to be isomorphic
if there exists a bijective function (an isomorphism) f : G → H
such that

f (ab) = f (a) f (b)

for all a, b ∈ G. We denote this by G ∼= H.

We’ll now prove a couple of basic facts about isomorphisms:

Lemma 1.25 Let f : G → H be an isomorphism of groups. Then
(i) f (1G) = 1H, and
(ii) f (g−1) = f (g)−1 for all g ∈ G.

Proof
(i) Since f is a bijection (and hence surjective) for any h ∈ H

there exists some g ∈ G such that f (g) = h. Then

f (1G)h = f (1G) f (g) = f (1Gg) = f (g) = h.

Hence f (1G) is a left identity in H, and by Lemma 1.15 (i) it
must be the identity 1H in H.

(ii) For any g ∈ G we have

f (g−1) f (g) = f (g−1g) = f (1G) = 1H,

hence f (g−1) is a left inverse of f (g), and so by Lemma 1.15 (ii)
it must be the inverse of f (g), namely f (g)−1.

Thus f (1G) = 1H and f (g−1) = f (g)−1 for all g ∈ G, as claimed.

The next proposition relates to our discussion about the different
orders of elements in V4 and Z4. Isomorphisms preserve the orders
of individual elements:
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Proposition 1.26 Let f : G → H be an isomorphism. Then |g| =
| f (g)| for all g ∈ G.

To prove this, we need to consider the finite-order and infinite-order
cases separately.

Proof Suppose first that |g| = n is finite. Then

f (g)n = f (gn) = f (1G) = 1H

and hence | f (g)| ⩽ n = |g|.
Now let m = | f (g)|. Then

f (gm) = f (g)m = 1H = f (1G).

Since f is a bijection, and hence injective, we must have gm = 1G, so
|g| ⩽ m. Hence

| f (g)| ⩽ |g| ⩽ | f (g)|
and so | f (g)| = |g| as claimed.

Suppose instead that g has infinite order. Then the elements gk are
distinct for all k ∈ Z. Since f is a bijection, and hence injective,
it follows that the elements f (gk) = f (g)k are also distinct for all
k ∈ Z. Therefore | f (g)| = |g| = ∞.

1.3 Cyclic groups

We met the cyclic groups Zn in Example 1.7, and we want to look
at them in a bit more detail now. First of all, we observe that we
can construct the entirety of Zn = {0, 1, 2, . . . , n−1} using just the
group operation +n and the element 1:

0 = 0
1 = 1
2 = 1 +n 1
3 = 1 +n 1 +n 1

...
n−1 = 1 +n · · ·+n 1

Formalising this idea we get the following definition:

Definition 1.27 A group G is cyclic if it consists of all the integral
powers of a single given element. That is, G is cyclic if there exists
some element g ∈ G such that for any h ∈ G there exists k ∈ Z

such that gk = h. Or, equivalently,

G = {gk : k ∈ Z}

for some g ∈ G.
The element g is called a generator of G.

The cyclic groups we’ve met so far have been additive rather than
multiplicative, but that’s really just a matter of notation. We could
just as easily have defined

Zn = {tk : 0 ⩽ k < n}
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for some symbol t and used multiplication such that tn = 1. See
Table 1.6 and compare it with Table 1.1.+4 1 t t2 t3

1 1 t t2 t3

t t t2 t3 1
t2 t2 t3 1 t
t3 t3 1 t t2

Table 1.6: Cayley table for the cyclic
group Z4 in multiplicative form

The additive group Z of integers is also cyclic: it can be generated
additively by the element 1 ∈ Z, since every integer k is of the
form k1. And as noted above, the finite cyclic groups Zn can all be
generated by the element 1 ∈ Zn using modulo–n addition.10

10 Is 1 the only generator of Zn? If not,
which other elements of Zn are genera-
tors?

We now provide a complete classification (up to isomorphism) of
cyclic groups:

Proposition 1.28 Any two infinite cyclic groups are isomorphic to Z,
and any two finite cyclic groups of order n are isomorphic to Zn.

Proof Suppose that G and H are infinite cyclic groups, such that G
is generated by some element g ∈ G, and H is generated by some
element h ∈ H. Then

G = {gk : k ∈ Z} and {hk : k ∈ Z}.

We observed earlier that the elements gk ∈ G are all distinct, and so
the map f : G → H defined by f (gk) = hk for all k ∈ Z is a bijection.
It also satisfies the structural property

f (gkgl) = f (gk+l) = hk+l = hkhl = f (gk) f (gl)

and is hence the required isomorphism. Since Z is also an infi-
nite cyclic group, it follows that any two infinite cyclic groups are
isomorphic to each other, and to Z.
Now suppose that G and H are finite cyclic groups of order n. Then

G = {gk : k ∈ Zn} and H = {hk : k ∈ Zn}.

Again, we define the map f : G → H with f (gk) = hk. This is also
a bijection and satisfies the structural property, and is hence an
isomorphism. Since Zn is also a finite cyclic group of order n, it
follows that any two finite cyclic groups of order n are isomorphic
to each other, and to Zn.

1.4 Symmetry groups

Another rich source of groups, and one of the original motivations
for the subject, is geometry. This has been a particularly important
line of inquiry in particle physics and molecular chemistry.

m1m2

m3

Figure 1.1: Axes of symmetry of an equi-
lateral triangle

Example 1.29 Consider an equilateral triangle (see Figure 1.1).
There are six different symmetry operations we can perform on
this:
• The identity operation, which just maps the triangle to itself.
• Reflections in each of the three axes of symmetry.
• Rotations through ±1

3 full turn.
We can compose these operations as if they were functions, by
doing one and then another. In each case, we get one of the six
operations on the list.
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So, here we have a set of objects (in this case, symmetry operations
or isometries) that is closed under a binary operation (composition).
We can turn this into a group:

· e r r2 m1 m2 m3

e e r r2 m1 m2 m3

r r r2 e m3 m1 m2

r2 r2 e r m2 m3 m1

m1 m1 m2 m3 e r r2

m2 m2 m3 m1 r2 e r
m3 m3 m1 m2 r r2 e

Table 1.7: The Cayley table for the dihe-
dral group D3

Example 1.30 Let

D3 = {e, r, r2, m1, m2, m3}

be the set of symmetry operations of an equilateral triangle. Here,
• e is the identity operation,
• r is an anticlockwise rotation through 2π

3 ,
• r2 is an anticlockwise rotation through 4π

3 (or equivalently a
clockwise rotation through 2π

3 ), and
• m1, m2 and m3 are reflections in the axes shown in Figure 1.1.
Composing each of these yields the group structure shown in
Table 1.7. We call this the dihedral group of the triangle.

More generally:11
11 In these notes, we denote the dihedral
group of the n–sided polygon by Dn.
However, you should be aware that since
|Dn| = 2n, some books denote it D2n. It
should be clear from context, but it’s
something to watch out for.

m1

m2

m3

m4

Figure 1.2: Axes of symmetry of the
square

e r r2 r3 m1 m2 m3 m4
e e r r2 r3 m1 m2 m3 m4
r r r2 r3 e m4 m1 m2 m3
r2 r2 r3 e r m3 m4 m1 m2
r3 r3 e r r2 m2 m3 m4 m1
m1 m1 m2 m3 m4 e r r2 r3

m2 m2 m3 m4 m1 r3 e r r2

m3 m3 m4 m1 m2 r2 r3 e r
m4 m4 m1 m2 m3 r r2 r3 e

Table 1.8: The multiplication table for
the dihedral group D4

Definition 1.31 Let n ∈ N with n ⩾ 3, and denote by Pn the
regular n–sided polygon in the plane with vertices at the points(

cos
(2πk

n
)
, sin

(2πk
n
))

for 0 ⩽ k < n. Then

Dn = {e, r, r2, . . . , rn−1, m1, . . . , mn}

is the dihedral group of Pn.

Here, r is an anticlockwise rotation of Pn through an angle 2π
n .

Then for 0 ⩽ k < n, the power rk denotes a 2πk
n anticlockwise

rotation, with e = r0 the identity map.
Furthermore, mk denotes a reflection in the line through the origin
that makes an angle kπ

n with the positive horizontal axis. If n is
odd, then these lines will pass through a vertex and the midpoint
of its opposite side. If n is even, then half of these lines will pass
through opposite vertices, and the other half will pass through
the midpoints of opposite sides.
See Figure 1.2 and Table 1.8 for the diagram and Cayley table for
the dihedral group D4.

The dihedral groups are not in general abelian. We can see this from
examining Tables 1.7 and 1.8: neither is symmetric in the leading
(top-left to bottom right) diagonal. We will look in more detail at
the dihedral groups later.

1.5 Permutation groups

Now we will look at an important class of groups. Historically, these
were some of the first groups studied in generality: the abstract
concept of a group as we understand it now didn’t really evolve
until the late 19th century.

Definition 1.32 A permutation on a set X is a bijection σ : X → X.
We denote by Sym(X) the set of all permutations on X.
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Choose a (finite or infinite) set X and consider two permutations σ
and τ. Since these are functions, we can compose them to get new
functions σ◦τ and τ◦σ defined by

(σ◦τ)(x) = σ(τ(x)) and (τ◦σ)(x) = τ(σ(x)).

These are both well-defined functions, and because the composite
of two bijections is also a bijection, they are also permutations on
the set X.
So we have a binary operation on Sym(X). This operation is asso-
ciative, because function composition is associative. We have an
identity permutation: the identity map ι : X → X, where ι(x) = x
for all x ∈ X. And for any permutation σ ∈ Sym(X) there is a
well-defined inverse permutation σ−1 which we can regard either
as the inverse of the map σ, or as the permutation that puts every
element of X back to where it was before σ shuffled everything
around. Hence Sym(X) forms a group under composition:

Definition 1.33 Let X be a (finite or infinite) set. The group
Sym(X), of all permutations σ : X → X, is the symmetric group
on X.
If X = {1, . . . , n} is a finite set consisting of n elements, we call
Sym(X) the symmetric group on n objects, and denote it Sn.

If X is an infinite set, then Sym(X) will also be infinite. But if X is
finite, then there are only finitely many distinct ways of rearranging
the elements of X, and so Sn has finite order:
Proposition 1.34 The finite symmetric group Sn has order n!.

Proof A permutation of the set X = {1, . . . , n} is completely deter-
mined by how it maps the numbers amongst themselves. There are
n choices for where 1 maps to, then (n−1) choices for where 2 goes
(since it can map to any of the remaining numbers except for the
one we mapped 1 to), then (n−2) possible choices for where 3 maps
to, and so on. So |Sn| = n(n−1)(n−2) . . . 1 = n! as claimed.

More generally, we have the following fact:

Proposition 1.35 Let X and Y be two sets with |X| = |Y|. Then
Sym(X) ∼= Sym(Y).

To help us work with permutations, we would like a consistent
notation. We have a couple of options.
One approach is that since σ : X → X is determined completely by
its action on the elements of X, we can represent it as an array:[

1 2 . . . n
σ(1) σ(2) . . . σ(n)

]
The first row lists the elements of X and the second lists their images
under the action of σ. So, suppose that σ ∈ S5 maps

1 7→ 1, 2 7→ 3, 3 7→ 5, 4 7→ 4, 5 7→ 2.

Then we can represent σ by the array[
1 2 3 4 5
1 3 5 4 2

]
.
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Suppose that we have another permutation τ ∈ S5 such that

1 7→ 2, 2 7→ 4, 3 7→ 5, 4 7→ 1, 5 7→ 3.

Then τ can be represented by the array[
1 2 3 4 5
2 4 5 1 3

]
.

We can represent composition quite easily by stacking the arrays on
top of each other:

τσ =

σ

[
1 2 3 4 5
1 3 5 4 2

]
τ

[
1 2 3 4 5
2 4 5 1 3

] =

[
1 2 3 4 5
2 5 3 1 4

]

In general, composition isn’t commutative, so we have to be careful
of the order.12 For example, 12 Because we regard permutations as

bijections, and the product operation as
being composition, we write products
from right to left, rather than left to right.
So τσ means σ followed by τ. Stacking
the arrays vertically, we read down the
page, so σ

τ means σ followed by τ.

στ =

τ

[
1 2 3 4 5
2 4 5 1 3

]
σ

[
1 2 3 4 5
1 3 5 4 2

] =

[
1 2 3 4 5
3 4 2 1 5

]
̸= τσ

This notation is quite clear, and makes it easy to work out the
composite of two permutations, but it becomes unwieldy with
larger numbers of permuting objects. It also doesn’t really tell us
much about the internal structure of the permutation.
For example, σ leaves 1 and 4 unchanged, but maps 2 7→ 3, 3 7→ 5
and 5 7→ 2. So repeated applications of σ leave 1 and 4 where they
are, while 2, 3 and 5 cycle amongst themselves. We can depict all
this graphically (see Figure 1.3).

σ

1

2

34

5

τ

1

2

34

5

τσ

1

2

34

5

στ

1

2

34

5

Figure 1.3: Graphical depictions of per-
mutations σ, τ, τσ and στ in S5

Ideally, however, we want a more compact notation that will enable
us to see the permutation’s internal structure. The key is to split
the permutation into disjoint cyclic subpermutations. For example,
the three-element cycle in σ can be written as (2, 3, 5), because each
element in the list maps to the next one along, wrapping back round
to the beginning. The fixed elements 1 and 4 could be written as
single-element cycles (1) and (4), but by convention we usually
just omit these for conciseness. So the ordered list (2, 3, 5) encodes
everything we need to know about the permutation σ.

Definition 1.36 Let X be a set, and suppose that x1, . . . , xk are
distinct elements of X. The cycle (x1, . . . , xk) denotes the permu-
tation ϕ ∈ Sym(X) such that:
(i) ϕ(xi) = xi+1 for 1 ⩽ i < k,
(ii) ϕ(xk) = x1, and
(iii) ϕ(y) = y for all y ∈ X \ {x1, . . . , xk}.

Similarly, we can write

τ = (1, 2, 4)(3, 5), τσ = (1, 2, 5, 4), στ = (1, 3, 2, 4).

The permutation τ consists of two nontrivial cycles (1, 2, 4) and
(3, 5), which don’t interact with each other: they act on disjoint
subsets of elements. In fact, we can write any permutation as a
product of disjoint cycles:
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Proposition 1.37 Any permutation σ ∈ Sn can be written as a product
of disjoint cycles.

Proof We will prove this by giving a well-defined procedure for
decomposing a given permutation into disjoint cycles:
• Open parentheses (.
• Write down the first element 1.
• Write down σ(1).
• Write down σ2(1) = σ(σ(1)).

...
• When we get back to 1, close parentheses ).
Now repeat this process, but instead of starting with 1, start with
the smallest integer not yet seen. Continue until all integers 1, . . . , n
have been written down. Then delete all single-element cycles.
What remains is a product of all the disjoint cycles in σ.

It isn’t immediately obvious how to multiply permutations together,
but with practice it turns out to be easier than it might appear.

Example 1.38 Let σ = (2, 3, 5) and τ = (1, 2, 4)(3, 5). We calcu-
late στ as follows:

στ = (2, 3, 5)(1, 2, 4)(3, 5)

Start with 1, and read through the list of cycles from right to left,
applying each one in turn until you’ve done them all:

1
(3,5)7−→ 1

(1,2,4)7−→ 2
(2,3,5)7−→ 3

Now do the same process, but starting with the number (in this
case 3) that you ended up with last time:

3
(3,5)7−→ 5

(1,2,4)7−→ 5
(2,3,5)7−→ 2

Now do it again, and again, until you end up back at 1:

2
(3,5)7−→ 2

(1,2,4)7−→ 4
(2,3,5)7−→ 4

4
(3,5)7−→ 4

(1,2,4)7−→ 1
(2,3,5)7−→ 1

This gives the first disjoint cycle (1, 3, 2, 4). Now repeat this pro-
cess with the smallest number (in this case 5) not yet seen:

5
(3,5)7−→ 3

(1,2,4)7−→ 3
(2,3,5)7−→ 5

Thus 5 is unchanged by στ, so our next cycle is (5), except that
by convention we omit length–1 cycles. Since all of the numbers
1, . . . , 5 are now accounted for, we are done, and στ = (1, 3, 2, 4).

Now we introduce a couple of definitions that will be useful later.

Definition 1.39 Let σ = (x1, . . . , xk) be a finite permutation in
some (possibly infinite) symmetric group Sym(X). Then σ has
length or periodicity l(σ) = k. This is equal to the order of the
element σ in Sym(X). A cycle of length 2 is called a transposition.
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It’s probably about time we looked at a few concrete examples.

Example 1.40 The symmetric group S3 has 3! = 6 elements.
These are:
• The identity permutation ι = ( ).
• Three transpositions (1, 2), (1, 3) and (2, 3).
• Two 3–cycles (1, 2, 3) and (1, 3, 2).

Example 1.41 The symmetric group S4 has 4! = 24 elements.
These are:
• The identity permutation ι = ( ).
• Six transpositions:

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

• Eight 3–cycles

(1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4)
(1, 3, 2) (1, 4, 2) (1, 4, 3) (2, 4, 3)

• Three double transpositions:

(1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)

• Six 4–cycles:

(1, 2, 3, 4) (1, 3, 2, 4) (1, 4, 2, 3)
(1, 2, 4, 3) (1, 3, 4, 2) (1, 4, 3, 2)

It turns out that every finite permutation can be written as a product
of transpositions, although these transpositions need not be disjoint.

Proposition 1.42 Let σ ∈ Sym(X) be a finite permutation in some
(possibly infinite) symmetric group Sym(X). Then σ can be written as
a product of (not necessarily disjoint) transpositions.

Proof We know from Proposition 1.37 that any finite permutation
σ ∈ Sym(X) can be written as a product of disjoint cycles. We will
now show that any finite-length cycle can be written as a product
of transpositions (that is, length–2 cycles).
Consider a cycle (x1, . . . , xk). Then this can be written as

(x1, . . . , xk) = (x1, xk)(x1, xk−1) . . . (x1, x3)(x1, x2).

Doing this for each of the (disjoint) cycles in σ yields a product of
(not necessarily disjoint) transpositions.

Corollary 1.43 The transpositions in Sn generate Sn.

So, we can decompose a finite permutation into a product of disjoint
cycles, and this decomposition is unique up to a certain amount of
reordering. But the decomposition into transpositions isn’t neces-
sarily going to be unique. It’s not even the case that two different
decompositions will have the same number of transpositions. But
we can at least talk about the parity of the number of transpositions:



16 ma267 groups and rings

Definition 1.44 Let σ ∈ Sym(X) be a finite permutation in a
(possibly infinite) symmetric group Sym(X). We say σ is even if it
can be written as a product of an even number of transpositions,
and odd if it can be written as a product of an odd number of
transpositions.

In order for this to make sense, we need the following:

Proposition 1.45 Let σ ∈ Sym(X) be a finite permutation on some
set X. Then σ is either even or odd, but not both.

What this says is that we can separate finite permutations into two
types, depending on whether they decompose as an odd or even
number of transpositions. We’ll omit the proof because it’s not very
illuminating and would be a bit of a digression at this point.
But now consider two permutations σ and τ. If both are even, then
their product will also be even. If one is even and one is odd, then
their product will be odd. And if both are odd, then their product
will be even.13 What this means is that the set of even permutations13 Try to convince yourself that this is

true, perhaps by looking at a few exam-
ples.

in Sym(X) is closed under composition. This gives us another
important subfamily of permutation groups:

Definition 1.46 Let X be a (possibly infinite) set. Denote by
Alt(X) the group of even permutations of X. This is the alternat-
ing group on X.
If X = {1, . . . , n} then we will usually denote Alt(X) by An.

We end this chapter with the observation that a cycle of length k, for
k ⩾ 2, is an even permutation if k is odd, and an odd permutation
if k is even. So, in particular, 3–cycles are even permutations.

Example 1.47 The alternating group A3 consists of the identity
permutation ι = ( ) and the two 3–cycles (1, 2, 3) and (1, 3, 2).

Example 1.48 The alternating group A4 consists of the identity
permutation ι = ( ), the eight 3–cycles

(1, 2, 3) (1, 2, 4) (1, 3, 4) (2, 3, 4)
(1, 3, 2) (1, 4, 2) (1, 4, 3) (2, 4, 3)

and the three double transpositions

(1, 2)(3, 4) (1, 3)(2, 4) (1, 4)(2, 3)

Notice that in both of these cases, |An| = 1
2 |Sn|. This happens to be

true for all n ∈ N, and the proof is left as an exercise.



2 Subgroups

The reader will find no figures in
this work. The methods which I set
forth do not require either construc-
tions or geometrical or mechanical
reasonings: but only algebraic op-
erations, subject to a regular and
uniform rule of procedure.

— Joseph-Louis Lagrange
(1736–1813),

preface to Mécanique Analytique
(1788)

· e r r2 m1 m2 m3
e e r r2 m1 m2 m3
r r r2 e m3 m1 m2
r2 r2 e r m2 m3 m1
m1 m1 m2 m3 e r r2

m2 m2 m3 m1 r2 e r
m3 m3 m1 m2 r r2 e

Table 2.1: The multiplication table for
the dihedral group D3 with the sub-
group {e, r, r2} highlighted

· e r r2 m1 m2 m3
e e r r2 m1 m2 m3
r r r2 e m3 m1 m2
r2 r2 e r m2 m3 m1
m1 m1 m2 m3 e r r2

m2 m2 m3 m1 r2 e r
m3 m3 m1 m2 r r2 e

Table 2.2: The multiplication table for
the dihedral group D3 with the sub-
group {e, m1} highlighted

If we look carefully at the Cayley tables of some of the groups
we met in the last chapter, we can see some interesting internal

structure. The dihedral group D3, for example, has an obvious block
consisting of just the identity and the two rotations (see Table 2.1).
We could throw away the three reflections and still be left with
a perfectly respectable group (which in this case happens to be
isomorphic to Z3). Or, we could throw away everything except
the identity e and one reflection (m1, say) and still have an order–2

group isomorphic to Z2 (see Table 2.2).

2.1 Definitions, examples and elementary properties

We’ll start with a definition.
Definition 2.1 Let G be a group. A subset S ⊂ G is a subgroup
of G if it forms a group under the same operation as G. We denote
this by H ⩽ G.

Subgroups inherit their identity elements from their parent groups:

Lemma 2.2 If H is a subgroup of a group G, then the identity element
1H is equal to the identity element 1G of G.

Proof For every h ∈ H we have 1Gh = h by the definition of the
identity in G. Applying Lemma 1.15 (i) to the group H, it follows
that 1H = 1G.

We can use the following proposition as a method for checking
whether a given subset is actually a subgroup.

Proposition 2.3 Let H be a nonempty subset of a group G. Then
H ⩽ G if and only if:
(i) H is closed under the group operation, that is, h1h2 ∈ H for all

h1, h2 ∈ H; and
(ii) H contains all required inverses, that is h−1 ∈ H for all h ∈ H.

Proof The subset H is a subgroup of G if and only if the four group
axioms (G0)–(G3) hold.1 Two of these, the closure axiom (G0) and 1 Definition 1.2, page 2.

the inverse axiom (G3) are conditions (i) and (ii) of the lemma, and
so if H is a subgroup then conditions (i) and (ii) must hold.
Conversely, suppose that (i) and (ii) hold. Then we need to show
that the associativity axiom (G1) and the identity axiom (G2) also
hold in H. The first of these is simple: since the inherited operation
is associative in G, it must also be associative in H because H is
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a subset of H. And since H is nonempty, it must contain at least
one element h. By condition (ii) it must also contain the inverse
h−1 of h, and then hh−1 = 1, which must also belong to H by the
closure condition (i). Hence the identity condition (G2) holds in H
and therefore H is a subgroup.

Having introduced the concept and proved a couple of basic facts,
it’s time to look at some examples.

Example 2.4 Let G be any group. Then G is a subgroup of itself.
Also, the trivial subgroup {1}, consisting just of the identity,
is also a subgroup of G. Subgroups other than G are called
proper subgroups, and subgroups other than {1} are said to be
nontrivial.

Example 2.5 The nonzero real numbers R∗ form a subgroup of
the multiplicative group C∗ of nonzero complex numbers. An-
other subgroup of C∗ is the one consisting of all the complex
numbers z ∈ C such that |z| = 1.

Example 2.6 The matrix groups SLn(R), On(R) and SOn(R) are
all subgroups of GLn(R), and furthermore SOn(R) is a subgroup
of On(R).

Example 2.7 If g is any element of a group G, then we define the
cyclic subgroup generated by g to be

⟨g⟩ = {gk : k ∈ Z}.

Let’s look at this example in more detail. For example, if G = Z,
then the subset

5Z = {5n : n ∈ Z},
consisting of all integer multiples of 5, is the cyclic subgroup gener-
ated by 5.
If G = ⟨g⟩ is a finite cyclic group of order n, and m is a positive
integer dividing n, then the cyclic subgroup ⟨gm⟩ has order n/m
and consists of the elements gmk for 0 ⩽ k < n/m.

Example 2.8 Let X be a set. The alternating group Alt(X) is a
subgroup of the symmetric group Sym(X). And if X is a finite
set with n elements, we have An ⩽ Sn.

We end this section with another basic fact: intersections of sub-
groups are subgroups.

Proposition 2.9 Let G be a group, and suppose that H and K are both
subgroups of G. Then their intersection H∩K is also a subgroup of G.

Proof Since H and K are subgroups of G, they must both contain
the identity 1G. Hence 1G ∈ H∩K ̸= ∅.
Having shown that H∩K is nonempty, we can apply Proposition 2.3.
Let a, b ∈ H∩K be arbitrary elements. Since a, b ∈ H and H is
a subgroup, their product ab must also lie in H. Similarly, since
a, b ∈ K, by closure ab ∈ K. Hence ab ∈ H∩K and so H∩K is closed
under the group operation.
Now consider a ∈ H∩K. Since a ∈ H and H is a subgroup, the
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inverse a−1 also lies in H. And since a ∈ K it follows that a−1 ∈ K.
Therefore a−1 ∈ H∩K, and hence H∩K ⩽ G.

In the previous chapter, we spent some time studying permutations.
One reason for this is the following important result, which says
that every group can be regarded as a permutation group.

Theorem 2.10 (Cayley’s Theorem) Any group G is isomorphic to
a subgroup of Sym(X) for some set X.

Proof For every element g ∈ G we define the function λg : G → G
by λg(h) = gh for all h ∈ G. In the special case where g = 1, the
function λ1 is just the identity map on G.
More generally, λg is a bijection G → G and hence a permutation
on G. In other words, λg ∈ Sym(G).
The injectivity of λg follows from the left cancellation law:2 if 2 Proposition 1.14, page 5.

λg(h) = λg(k) for some h, k ∈ G, then this means that gh = gk,
whence h = k.
To prove surjectivity of λg, given some h ∈ G we want to find some
k ∈ G such that h = λg(k). But this is the same as saying h = gk,
from which we see that k = g−1h, and so λg(k) = gg−1h = h.
Therefore λg is a bijection, and thus a permutation of G.
Let S = {λg : g ∈ G}. We now want to show that this subset
S ⊆ Sym(G) is actually a subgroup of Sym(G), and furthermore
that it’s isomorphic to G itself. The group operation in S is just the
usual composition operation inherited from Sym(G).
This set S is nonempty, so we can apply Proposition 2.3. First we
check the closure condition. Given g, h, k ∈ G, we have

(λg◦λh)(k) = λg(λh(k)) = λg(hk) = g(hk) = (gh)k = λgh(k)

and since for any g, h ∈ G the product gh ∈ G so the permutation
λgh also lies in S. So S is closed under composition.
Now we need to show that S contains all required inverses. The
function λ1 is just the identity map on G, and hence the identity
permutation ι ∈ Sym(G). So the inverse λ−1

g is the permutation λh
such that

λh◦λg = λ1 = λg◦λh

But we know from the previous paragraph that λg◦λh = λgh, so
what we’re really looking for is h ∈ G such that hg = 1. That is,
h = g−1, and hence λ−1

g = λg−1 .

So S is nonempty, closed under composition, and contains both
an identity element and a full set of inverses, and is therefore a
subgroup of Sym(G). All we need to do now is show that S ∼=
G, which requires us to find a bijection f : G → S satisfying the
structural condition in Definition 1.24.
The obvious candidate for this isomorphism f is the map that takes
an element g to its corresponding permutation λg ∈ S. So define
f (g) = λg for all g ∈ G.
This map f is injective: suppose that f (g) = λg = λh = f (h) for
some g, h ∈ G. Then it follows that λg(k) = gk = hk = λh(k) for all
k ∈ G, and by the left cancellation law it follows that g = h.
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Surjectivity follows from the definition of S: for any λg ∈ S there
exists g ∈ G such that f (g) = λg.
ThusHence f is a bijection, and all that remains is to check the
structure condition:

f (g)◦ f (h) = λg◦λh = λgh = f (gh).

Hence f is the required isomorphism G ∼= S ⩽ Sym(G).

2.2 Cosets and Lagrange’s Theorem

In the proof of Cayley’s Theorem, we introduced bijections λg : G →
G for all g ∈ G. Since they are bijections, we have λg(G) = G in all
cases. But what happens if we choose a subgroup H ⩽ G and look
at the various images λg(H) as g varies throughout G?
Well, it turns out that

λg(H) = {gh : h ∈ H} ⊆ G.

Let’s look at a concrete example.

Example 2.11 Let R3 = {e, r, r2} ⊂ D3. Then we have:

λe(R3) = {e, r, r2} = R3, λm1(R3) = {m1, m2, m3} = D3 \ R3,

λr(R3) = {r, r2, e} = R3, λm2(R3) = {m2, m3, m1} = D3 \ R3,

λr2(R3) = {r2, e, r} = R3, λm3(R3) = {m3, m1, m2} = D3 \ R3.

So the action of the permutations on the subgroup R3 partitions
D3 into two distinct subsets: R3 itself and its complement D3\R3.

These subsets are going to be important, so we’ll give them a special
name:
Definition 2.12 Let G be a group, let H ⩽ G be a subgroup of G,
and let g ∈ G. Then the left coset of H determined by g is

gH = {gh : h ∈ H}

and the corresponding right coset is

Hg = {hg : h ∈ H}.

In the case of additive groups, we usually denote the cosets by g+H.
Note that it is always the case that g lies in gH and Hg, because
since 1 ∈ H we have g = g1 ∈ gH and g = g1 ∈ Hg.

Proposition 2.13 Let G be a group, let H ⩽ G, and suppose that
g, k ∈ G. Then the following statements are equivalent:
(i) k ∈ gH,
(ii) gH = kH,
(iii) g−1k ∈ H.

Proof First we show that (i) =⇒ (ii). Suppose that k ∈ gH. Then
k = gh for some fixed h ∈ H. Multiplying on the right by h−1

gives g = kh−1. Let x ∈ gH. Then for some h1 ∈ H we have
x = gh1 = kh−1h1 ∈ kH, so gH ⊆ kH. Similarly, if x ∈ kH then
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for some h2 ∈ H we have x = kh2 = ghh2 ∈ gH, so kH ⊆ gH, and
hence kH = gH.
Showing that (ii) =⇒ (i) is fairly straightforward. Suppose that
gH = kH. Then k = k1 ∈ kH = gH, so k ∈ gH.
Now suppose that k ∈ gH. Then again, k = gh for some fixed
h ∈ H, and multiplying on the left by g−1 gives g−1k = h ∈ H, so
(i) =⇒ (iii).
Finally, if g−1k ∈ H, then putting h = g−1k we have gh = k, so k ∈
gH. Hence (iii) =⇒ (i), and all three conditions are equivalent.

We saw in the example above that the rotation subgroup R3 =
{e, r, r2} has two cosets in D3, namely R3 itself and its complement.
What about another subgroup?

Example 2.14 Let H = {e, m1} ⩽ D3. Then the left and right
cosets of H in D3 are as follows:

eH = m1H = H, He = Hm1 = H,
rH = m3H = {r, m3}, Hr = Hm2 = {r, m2},

r2H = m2H = {r2, m2}, Hr2 = Hm3 = {r2, m3}.

There are two things to notice here. The first is that the left cosets
neatly partition D3 into three disjoint subsets, and so do the right
cosets. We’ll look at this behaviour now. The other thing to notice
is that the left cosets of H aren’t necessarily the same as the right
cosets of H, although this was the case when we looked at R3 a
little while ago. We’ll investigate this in the next chapter.

Corollary 2.15 Two left cosets g1H and g2H of H in G are either
equal or disjoint.

Proof If g1H and g2H aren’t disjoint, then there exists some element
k ∈ g1H∩g2H. But then k ∈ g1H so kH = g1H, and also k ∈ g2H,
so kH = g2H. Hence g1H = kH = g2H.

This immediately implies the following:

Corollary 2.16 The left cosets of H in G partition G.

Proposition 2.17 Let G be a group, and H a finite subgroup of G. All
left cosets of H have exactly |H| elements.

Proof Let g ∈ G and define f : H → gH by f (h) = gh. This is
injective, since for any h1, h2 ∈ H with f (h1) = f (h2) we have
gh1 = gh2, and the cancellation law3 then implies that h1 = h2. And 3 Proposition 1.14, page 5.

f is surjective, since for any k ∈ gH there must be some h ∈ H
such that k = gh, and then f (h) = k. Therefore f is a bijection, and
|H| = |gH|.
We now have all the ingredients to prove the following important
theorem:
Theorem 2.18 (Lagrange’s Theorem) Let G be a finite group and
H a subgroup of G. Then the order or H divides the order of G.

Proof By Corollary 2.16, the left cosets of H partition G. That
is, G =

⋃
g∈G gH, and either g1H = g2H or g1H∩g2H = ∅ for
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all g1, g2 ∈ G. And Proposition 2.17 tells us that all the left cosets
(including 1H = H itself) have the same number of elements. Hence
the order of G must be a multiple of the order of H.

Joseph-Louis Lagrange (1736–1813)

Definition 2.19 The number of distinct left cosets of H in G is
called the index of H in G, and is denoted |G : H|.

Another version of Lagrange’s Theorem is as follows:

Theorem 2.20 Let G be a finite group and H a subgroup of G. Then

|G| = |H| · |G : H|.

Proposition 2.21 Let G be a finite group. Then for any g ∈ G, the
order |g| of g divides the order |G| of G.

Proof Suppose that |g| = n. Then recall from Example 2.7 that the
powers {gk : k ∈ Z} of g form a finite subgroup of G; this is the
cyclic subgroup ⟨g⟩ generated by g. But ⟨g⟩ = {gk : 0 ⩽ i < n}
and so |⟨g⟩| = |g| = n. By Lagrange’s Theorem, the order of any
subgroup of a finite group G must divide the order of G. Hence n
must be a factor of |G|.
Lagrange’s Theorem provides a necessary condition on the order
of a subgroup of a finite group. It says that if H is a subgroup of
a finite group G, then |H| must divide |G|. But this condition is
not sufficient. Even if some integer k divides |G|, it doesn’t mean
that G actually has a subgroup with that many elements. The
smallest counterexample concerns the alternating group A4, which
has order 12 but doesn’t have a subgroup of order 6, even though
6|12.44 Proposition 6.33, page 60.

The following theorem provides a partial converse, however:55 This proof is a slightly expanded ver-
sion of the elegant ten-line proof in the
following article:

James H. McKay, Another Proof of
Cauchy’s Group Theorem, The American
Mathematical Monthly 66.2 (1959) 119.

Theorem 2.22 (Cauchy’s Theorem) Let G be a finite group of order
|G| = n. If p is a prime factor of n, then G contains a nontrivial element
(and hence a cyclic subgroup) of order p.

Augustin-Louis Cauchy (1789–1857)

Proof Let

S = {(g1, . . . , gp) : g1, . . . , gp ∈ G and g1 . . . gp = 1}.

This set has np−1 members, since we have n choices for each of the
elements g1, . . . , gp−1, and then gp has to be (g1 . . . gp−1)

−1.
We define an equivalence relation on S as follows: consider two
ordered p–tuples in S to be equivalent if one is a cyclic permutation
of the other.
If all of the elements in a given p–tuple are the same (that is, if it is
of the form (g, . . . , g) for some g ∈ G) then it is the only element in
its equivalence class. And if a given p–tuple has at least two distinct
elements then that equivalence class contains exactly p members.
So each of the equivalence classes determined by this relation con-
tain either a single element, or p elements.
Let r denote the number of elements g such that gp = 1. Then r is
the number of equivalence classes with exactly one member. Let s
be the number of equivalence classes with exactly p members. Then
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r + sp = np−1 = |S|. We know that p|n, so p|np−1, and obviously
p|sp. So it must be the case that p|r as well.
Finally, we know that r > 0 since at the very least (1, . . . , 1) ∈ S, as
1p = 1. And since p|r there must be at least one other single-element
equivalence class comprising a p–tuple (g, . . . , g) for g ̸= 1. Then
gp = 1 and so |g| = p. The cyclic subgroup ⟨g⟩ generated by this
element has exactly p distinct elements.

We’ll finish with a nice application of Lagrange’s Theorem:

Proposition 2.23 For any n, r ∈ Z such that 0 ⩽ r ⩽ n, the binomial
coefficient (n

r) =
n!

(n−r)!r! is an integer.

Proof Recall from Proposition 1.34 that |Sn| = n!. Now let H be the
subgroup of Sn consisting of permutations in which the first r ele-
ments are permuted amongst themselves, and the remaining (n−r)
elements are permuted amongst themselves. This is a subgroup
of Sn: it is nonempty, closed under composition, and contains all
required inverses. And |H| = r!(n−r)! because there are r! possible
permutations for the first r elements, and (n−r)! possible permu-
tations of the remaining (n−r) elements. By Lagrange’s Theorem,
|H| must divide |Sn|, and hence (n

r) must be an integer.





3 Normal Subgroups and Quotients

All parts should go together with-
out forcing. You must remember
that the parts you are reassembling
were disassembled by you. There-
fore, if you can’t get them together
again, there must be a reason. By
all means, do not use a hammer.

— IBM maintenance manual
(c.1925)

If a group G is abelian, then clearly for any subgroup H ⩽ G
and element g ∈ G, the left coset gH will be equal to the right

coset Hg, because all the elements of G commute with each other,
so

gH = {gh : h ∈ H} = {hg : h ∈ H} = Hg.

This will sometimes happen for nonabelian groups, as we saw in
Example 2.11. But sometimes it won’t, as we saw in Example 2.14.

3.1 Normal subgroups

Not every subgroup has this property, so we’ll give a special name
to those that do:
Definition 3.1 Let G be a group. A subgroup H ⩽ G is said to
be normal in G, or a normal subgroup of G, if the left coset gH
is equal to the right coset Hg for all g ∈ G. We will denote this
by H P G. (We may also use the notation H ◁ G if H is a proper
subgroup of G.)

Some examples:

Example 3.2 For any group G, the trivial subgroup {1} and the
group G itself are both normal subgroups of G.

Example 3.3 If G is an abelian group, then all of its subgroups
are normal.

Example 3.4 As we saw in Example 2.11, the rotation subgroup
R3 = {e, r, r2} is a normal subgroup of the dihedral group D3.
More generally, the rotation subgroup

Rn = {e, r, r2, . . . , rn−1} < Dn

is normal in Dn.

The rotation subgroup Rn is an index–2 subgroup of the dihedral
group Dn; that is, |Dn : Rn| = 2. It turns out that this is relevant to
its normality:

Proposition 3.5 Let G be a group. If H is a subgroup of G with index
|G : H| = 2 then H is a normal subgroup of G.

Proof Recall that we defined the index |G : H| to be the number
of distinct left cosets of H in G.1 If |G : H| = 2, then one of these 1 Definition 2.19, page 22.

cosets must be H itself, and since the cosets partition G,2 the other 2 Corollary 2.16, page 21.
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must be its complement G \ H. The same applies to right cosets.
Hence, for g ∈ G, if g ∈ H then gH = H = Hg. And if g ̸∈ H, then
gH = G \ H = Hg. In either case, gH = Hg, so H ◁ G.

Example 3.6 As remarked at the end of Chapter 1, |An| = 1
2 |Sn|,

and hence |Sn : An| = 2. By the above proposition, then, An ◁ Sn.
More generally, Alt(X) ◁ Sym(X).

The following proposition gives an alternative (and sometimes more
useful) characterisation of normal subgroups.

Proposition 3.7 Let H be a subgroup of a group G. Then H is normal
in G if and only if ghg−1 ∈ H for all g ∈ G and h ∈ H.

Proof Suppose that H P G, and suppose that g ∈ G and h ∈ H.
Then gh ∈ gH, and since H is normal, gH = Hg, so gh ∈ Hg as
well. This means that there exists some h1 ∈ H such that gh = h1g.
Hence ghg−1 = h1 ∈ H.
Conversely, suppose that ghg−1 ∈ H for all g ∈ G and h ∈ H.

Then for gh ∈ gH we have ghg−1 ∈ H and so ghg−1 = h2 for some
h2 ∈ H. Then gh = h2g ∈ Hg, so gH ⊆ Hg.
Now suppose that hg ∈ Hg. Since g−1 ∈ G we also have g−1hg ∈ H,
and so if we set g−1hg = h3, it follows that hg = gh3 ∈ gH. So
Hg ⊆ gH. Thus gH = Hg and so H P G.

Now is a good time to introduce the following terminology:

Definition 3.8 Let G be a group. An element g ∈ G is conjugate
to an element h ∈ G if there exists some k ∈ G such that kgk−1 = h.
We say also that h is the result of conjugating g with k.

So Proposition 3.7 says that H ⩽ G is a normal subgroup of G
exactly when it is closed under conjugation by all elements of G.

3.2 Quotient groups

As we saw earlier, given any subgroup H of a group G, we can
neatly split G into a collection of subsets (called cosets) all of which
are the same size. There are two ways of doing this, depending
on whether we look at the left or right cosets, but if H is a normal
subgroup of G these are the same. It turns out that (as long as H is
a normal subgroup) we can define a group structure on these left
(or right) cosets.
First, we need some notation:
Definition 3.9 Let A and B be subsets of a group G. We define
their product

AB = {ab : a ∈ A, b ∈ B}

We’ll use this notation a few times in the rest of these notes, but
right now we’re going to look at what happens if we take products
of cosets.
Proposition 3.10 Let N be a normal subgroup of a group G, and
suppose that g, h ∈ G. Then (gN)(hN) = (gh)N.
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Proof Let gn1 ∈ gN and hn2 ∈ hN. Then since N is a normal
subgroup of G, we have gN = Ng, and so n1h ∈ Nh is equal to
some element hn3 ∈ hN. Hence

(gn1)(hn2) = g(n1h)n2 = g(hn3)n2 = (gh)(n3n2) ∈ (gh)N

and so (gN)(hN) ⊆ (gh)N.
Now suppose that ghn ∈ (gh)N. Then ghn = (g1)(hn) ∈ (gN)(hN)
and hence (gh)N ⊆ (gN)(hN). Therefore (gN)(hN) = (gh)N.

This gives us a well-defined binary operation on the set of (left)
cosets of N in G. In fact, we can turn this into a group:

Proposition 3.11 If N is a normal subgroup of a group G, the set

G/N = {gN : g ∈ G}

of all left cosets of N in G forms a group under the multiplication
operation

(gN)(hN) = (gh)N

for all g, h ∈ G.

Proof We’ve just seen that (gN)(hN) = (gh)N, so the closure re-
quirement is satisfied, and this is a binary operation on G/N. As-
sociativity follows almost immediately from the associativity in
G:

((gN)(hN))(kN) = ((gh)N)(kN) = ((gh)k)N
= (g(hk))N = (gN)((hk)N) = (gN)((hN)(kN))

Since

N(gN) = (1N)(gN) = (1g)N = gN
= (g1)N = (gN)(1N) = (gN)N,

the subgroup N itself serves as an identity element.
And since

(g−1N)(gN) = (g−1g)N = N = (gg−1)N = (gN)(g−1N),

the coset g−1N is the inverse of the coset gN for all g ∈ G.
Therefore G/N is a group.

Definition 3.12 Let G be a group, and N a normal subgroup of
G. The group G/N constructed in Proposition 3.11 is called the
quotient group or factor group of G by N.

∗ e r r2 m1 m2 m3
e e r r2 m1 m2 m3
r r r2 e m3 m1 m2
r2 r2 e r m2 m3 m1
m1 m1 m2 m3 e r r2

m2 m2 m3 m1 r2 e r
m3 m3 m1 m2 r r2 e

Table 3.1: Cosets of R3 in D3

∗ e m1 r m3 r2 m2
e e m1 r m3 r2 m2

m1 m1 e m2 r2 m3 r
r r m3 r2 m2 e m1

m3 m3 r m1 e m2 r2

r2 r2 m2 e m1 r m3
m2 m2 r2 m3 r m1 e

Table 3.2: Left cosets of {e, m1} in D3

Why do we need N to be a normal subgroup of G? Well, the
reason is that if N isn’t normal, the left and right cosets partition G
differently and the set G/N doesn’t have a group structure. Table 3.1
shows the group table for D3/R3, and we can see that we get a nice
block structure (that looks very much like the group table for Z2).
However, Table 3.2 shows the group table if we try to factor by the
non-normal subgroup H = {e, m1}, and we can see that this doesn’t
yield such a neat structure, and certainly not one that looks like the
group table for Z3.
Time for some examples.
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Example 3.13 If we factor a group G by its trivial subgroup {1}
then we get a group isomorphic to G itself. That is, G/{1} ∼= G.
And if we factor G by itself, we get a single coset consisting of the
entirety of G, and the resulting quotient group is trivial. That is,
G/G ∼= {1}.

Example 3.14 Let G be the infinite cyclic group Z and let N =
nZ = {nk : k ∈ Z} be the subgroup generated by a fixed positive
integer n. By Proposition 2.13 (using additive notation) we see
that the cosets i+nZ and j+nZ are equal if and only if i ∼= j
(mod n). So there are n distinct cosets:

nZ = 0+nZ, 1+nZ, . . . , (n−1)+nZ

The quotient group Z/nZ is isomorphic to Zn = {0, 1, . . . , n−1}
via the isomorphism f : i+nZ 7→ i for 0 ⩽ i < n. We can visualise
this as wrapping the infinite set Z of integers into a circle of n
numbers: Figure 3.1 shows this for the case Z/12Z ∼= Z12.
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Figure 3.1: Wrapping Z into Z12.

Example 3.15 Suppose G = ⟨g⟩ ∼= Zn is a finite cyclic group, with
|g| = n = lm composite. Let N = ⟨gm⟩ be the cyclic subgroup
generated by gm. This subgroup has order l = n/m and consists
of the elements {gmk : 0 ⩽ k < l}. Since all cosets have the form
gkN for some k ∈ Z, it follows that G/N is cyclic and is generated
by gN. Its order is |G/N| = |G|/|N| = n/l = m. To see this, note
that giN = gjN if and only if gi−j ∈ N, if and only if m|(i−j),
and so the distinct cosets of N in G are gkN for 0 ⩽ k < m. In
particular, (gN)m = gmN = N is the identity element of G/N,
and the order of gN is m.

3.3 Direct products

Given two groups G and H we can combine them in the following
way to form a new group.33 There is a technical difference between

the direct sum and the direct product,
but this only becomes relevant when
taking the direct sum or product of in-
finitely many groups, which we won’t
be doing. For finite collections of groups,
the two concepts are equivalent, so we
will use them interchangeably, largely
dependent on whether the groups in
question are using multiplicative or ad-
ditive notation.

Definition 3.16 Given two groups G and H, their direct product
is formed from the cartesian product of their underlying sets

G×H = {(g, h) : g ∈ G, h ∈ H}

with the group operation

(g1, h1)(g2, h2) = (g1g2, h1h2).

If G and H are additive groups, we might instead refer to the
direct sum

G⊕H = {(g, h) : g ∈ G, h ∈ H}
with group operation

(g1, h1) + (g2, h2) = (g1+g2, h1+h2).

As an exercise, prove that this is a group.
The two component groups of a direct product form normal sub-
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groups:

Proposition 3.17 Let G and H be groups. Their direct product G×H
has a normal subgroup isomorphic to G and a normal subgroup isomor-
phic to H. Furthermore, G×H/G ∼= H and G×H/H ∼= G.

Proof First, consider the subset S = {(g, 1) : g ∈ G} ⊆ G×H.
This is nonempty, since 1G×H = (1, 1) ∈ S. It is closed under
multiplication, since (g1, 1)(g2, 1) = (g1g2, 1) ∈ S. And it contains
all necessary inverses, since if (g, 1) ∈ S then (g−1, 1) ∈ S as well,
and (g, 1)(g−1, 1) = (gg−1, 1) = (1, 1).
Hence S ⩽ G×H, and S ∼= G by the map f : S → G given by
f (g, 1) = g.
For any (g, 1) ∈ S and (k, h) ∈ G×H we have

(k, h)(g, 1)(k, h)−1 = (k, h)(g, 1)(k−1, h−1)

= (kgk−1, h1h−1) = (kgk−1, 1) ∈ S,

so S P G×H.
Consider the quotient G×H/S. This comprises cosets of the form

(k, h)S = {(k, h)(g, 1) : g ∈ G} = {(kg, h) : g ∈ G}.

We can define a map f : G×H/S → H by (k, h)S 7→ h. This is
injective, since if f ((k1, h1)S) = f ((k2, h2)S) then h1 = h2, and so
(k1, h1)S = (k2, h2)S. And it is surjective since for any h ∈ H we
have f ((1, h)S) = h. It satisfies the structural condition since for
any (k1, h1)S and (k2, h2)S we have

f ((k1, h1)S(k2, h2)S) = f ((k1k2, h1h2)S)
= h1h2 = f ((k1, h1)S) f ((k2, h2)S).

Thus f is an isomorphism G×H/S ∼= H. We might write this as
G×H/H ∼= H without ambiguity.
By a very similar argument, G×H has a normal subgroup isomor-
phic to H, and the corresponding quotient is isomorphic to G.

The following proposition gives us sufficient conditions for a group
to be isomorphic to the direct product of two of its subgroups.

Proposition 3.18 Suppose H, K ⩽ G are two subgroups of a group
G, such that H∩K = {1}, every element of H commutes with every
element of K (that is, hk = kh for all h ∈ H and k ∈ K) and HK = G.
Then G ∼= H×K.

Proof Let f : H×K → G with f (h, k) = hk for all h ∈ H and k ∈ K.
Then if h1, h2 ∈ H and k1, k2 ∈ K, we have

f ((h1, k1)(h2, k2)) = f (h1h2, k1k2) = h1h2k1k2

= h1k1h2k2 = f (h1, k1) f (h2, k2).

So f satisfies the required structure condition. It is surjective, since
G = HK, and so any element of G can be expressed as a product
hk = f (h, k), which is the image of an ordered pair in H×K.
All we need to show now is that f is injective. Suppose that
f (h1, k1) = f (h2, k2). Then h1k1 = h2k2, and so h−1

2 h1 = k2k−1
1 .
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But the terms on the left hand side of this expression belong to
H, while the terms on the right hand side belong to K. So both
h−1

2 h1 and k2k−1
1 belong to the intersection H∩K = {1}, and so

h−1
2 h1 = k2k−1

1 = 1. Then h1 = h2 and k1 = k2, so f is injective, and
hence the required isomorphism. Thus G ∼= H×K.

This is sometimes called the internal direct product of H and K.
We can use this result to provide an alternative viewpoint on the
Klein group V4:

Proposition 3.19 The Klein group V4 is isomorphic to the direct prod-
uct Z2×Z2.

Proof Let G = V4 = {e, a, b, c} be the Klein group. Let H = {e, a}
and K = {e, b} be two subgroups, both clearly isomorphic to Z2.
Then H∩K = {e}, and since G is abelian, every element of H com-
mutes with every element of K. Furthermore, HK = {e, a, b, c} = G,
and thus V4

∼= Z2×Z2 as claimed.

We will end this chapter with an important fact about direct prod-
ucts of finite cyclic groups.

Proposition 3.20 Zm×Zn ∼= Zmn if and only if gcd(m, n) = 1; that
is, if m and n are coprime.

Proof The key is to examine the subgroup ⟨(1, 1)⟩ of Zm×Zn gen-
erated by the element (1, 1, ). Since both m and n are finite, the first
coordinate will cycle back round to 0 after m additions, while the
second will do so after n additions.
Suppose that m and n are coprime. Then after m additions, the
first coordinate will be 0 but the second won’t. Similarly, after
n additions the second coordinate will be 0 but the first won’t.
To get back to (0, 0) we need to add (1, 1) to itself a number of
times that contains both m and n as factors. The smallest such
number is the least common multiple lcm(m, n). Since m and n
are coprime, lcm(m, n) = mn and so this subgroup ⟨(1, 1)⟩ has mn
distinct elements. But |Zm×Zn| = mn too, so (1, 1) generates the
entirety of Zm×Zn. So Zm×Zn is cyclic, and hence isomorphic to
Zmn by Proposition 1.28.
To prove the converse, suppose that gcd(m, n) = d > 1. Then both
m and n are divisible by d, and so lcm(m, n) = mn

d . This means that
the subset ⟨(1, 1)⟩ has mn

d elements and hence can’t be isomorphic
to Zmn, but instead is isomorphic to Zmn/d.
In fact, no element (a, b) ∈ Zm×Zn can generate the entire group,
since

(a, b) + · · ·+ (a, b) =
(mn

d a, mn
d b

)
=

(n
d ma, m

d nb
)
= (0, 0).

So Zm×Zn isn’t cyclic and can’t be isomorphic to Zmn.
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In the judgment of the most
competent living mathematicians,
Fräulein Noether was the most sig-
nificant creative mathematical ge-
nius thus far produced since the
higher education of women began.
In the realm of algebra, in which the
most gifted mathematicians have
been busy for centuries, she discov-
ered methods which have proved of
enormous importance in the devel-
opment of the present-day younger
generation of mathematicians.

— Albert Einstein (1879–1955),
letter to the New York Times,

5 May 1935

Structures are the weapons of the
mathematician.

— attributed to Nicolas Bourbaki
(1934– )

Early in the first chapter, we introduced the concept of an
isomorphism, a structure-preserving bijection between groups.

Now we will generalise this notion, dropping the bijectivity require-
ment.

4.1 Structure-preserving maps

We start with the following definitions:

Definition 4.1 Let G and H be groups. A function f : G → H is
a homomorphism if, for all g1, g2 ∈ G we have

f (g1g2) = f (g1) f (g2).

In addition, we have the following types of homomorphism:
• An injective homomorphism is called a monomorphism; that is,

if f (g1) = f (g2) only when g1 = g2.
• A surjective homomorphism is called an epimorphism; that is, if

for all h ∈ H there exists some g ∈ G with f (g) = h.
• A homomorphism f : G → G from a group to itself is called an

endomorphism.
• An isomorphism is a bijective homomorphism.
• A bijective endomorphism (that is, an isomorphism from a group

to itself) is called an automorphism.
Homomorphisms behave properly with respect to the group opera-
tion, and as a consequence they also respect identities and inverses:

Proposition 4.2 Let G and H be groups, and suppose that f : G → H
is a homomorphism. Then f (1G) = 1H, and f (g−1) = f (g)−1 for all
g ∈ G.

Proof First, suppose that f (1G) = h ∈ H. Then

1Hh = h = f (1G) = f (1G1G) = f (1G) f (1G) = hh,

and so h = 1H by the cancellation law.1 1 Proposition 1.14, page 5.

Secondly, if g ∈ G and f (g) = h, then

f (g−1) f (g) = f (g−1g) = f (1G) = 1H = h−1h = f (g)−1 f (g),

so f (g−1) = f (g)−1, again by the cancellation law.

Now for some examples of homomorphisms.
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Example 4.3 For any group G there exists an identity homomor-
phism id : G → G given by id(g) = g for all g ∈ G.

Example 4.4 For any groups G and H there exists a trivial or
zero homomorphism z : G → H given by z(g) = 1H for all g ∈ G.

Example 4.5 Let k ∈ G be some fixed element of a group G. Then
for any g, h ∈ G we have

(kgk−1)(khk−1) = kg(k−1k)hk−1 = k(gh)k−1,

so the map fk : G → G given by fk(g) = kgk−1 is a homomor-
phism from G to itself.

In fact, it is an isomorphism. If fk(g) = fk(h), then kgk−1 = khk−1

and the cancellation laws imply that g = h, so it is injective.
And it is surjective, since for any h ∈ G we have fk(k−1hk) =
kk−1hkk−1 = h.
If G is abelian, then fk is the identity homomorphism, since
fk(g) = kgk−1 = kk−1g = g for all g ∈ G. So these conjuga-
tion homomorphisms (or conjugation automorphisms) are only
interesting when G is nonabelian.

Example 4.6 Let R∗ be the multiplicative group of nonzero real
numbers, and consider the map f : GLn(R) → R∗ defined by
f (A) = det(A) for all nonsingular n×n real matrices A ∈ GLn(R).
Recall from linear algebra that the determinant has a multiplica-
tive property: det(AB) = det(A)det(B) for any A, B ∈ GLn(R).
It is therefore a homomorphism.

Inclusion of a subgroup into its parent group is a homomorphism:

Example 4.7 Let H be a subgroup of a group G. Then the in-
clusion homomorphism i : H → G is defined by i(h) = h ∈ G.
Sometimes we denote this with a hooked arrow: i : H ↪→ G.
More generally, suppose that G = G1 × · · · × Gn is a direct prod-
uct of n groups. Then the canonical inclusion homomorphism
ik : Gk ↪→ G is defined by ik(g) = (1G1 , . . . , 1Gk−1 , g, 1Gk+1 , . . . , 1Gn)
for 1 ⩽ k ⩽ n.
These homomorphisms are injective.

And the projection of a direct product onto one of its factors is also
a homomorphism:

Example 4.8 Let G = G1 × · · · × Gn be a direct product of n
groups. The canonical projection homomorphism pk : G → Gk
given by pk(g1, . . . , gk, . . . , gn) = gk is a homomorphism for all
g1 ∈ G1, . . . , gn ∈ Gn, and 1 ⩽ k ⩽ n.
These homomorphisms are surjective.

Composites of homomorphisms are homomorphisms:

Proposition 4.9 Let G, H and K be groups, and suppose that ϕ : G →
H and ψ : H → K are homomorphisms. Then the composite map
ψ◦ϕ : G → K is also a homomorphism.
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Proof Suppose that g1, g2 ∈ G. Then

(ψ◦ϕ)(g1g2) = ψ(ϕ(g1g2))

= ψ(ϕ(g1)ϕ(g2))

= ψ(ϕ(g1))ψ(ϕ(g2))

= (ψ◦ϕ)(g1)(ψ◦ϕ)(g2)

and so ψ◦ϕ is also a homomorphism.

4.2 Kernels and images

In linear algebra we meet the concepts of the kernel or null space
of a linear map, and also the image or column space. Now we
formulate and study the analogous concepts for groups.

Definition 4.10 Given a homomorphism f : G → H, we define
the image of f to be the set

im( f ) = { f (g) : g ∈ G} ⊆ H.

The image of a linear map is a subspace of the codomain, and we
have a similar situation for the image of a group homomorphism:

Proposition 4.11 Let f : G → H be a homomorphism. Then im( f ) is
a subgroup of H.

Proof First, recall from Proposition 4.2 that f (1G) = 1H, so 1H ∈
im( f ) and hence im( f ) is nonempty.
Now suppose that h1, h2 ∈ im( f ) ⊆ H. Then there exist g1, g2 ∈ G
such that h1 = f (g1) and h2 = f (g2). And

h1h2 = f (g1) f (g2) = f (g1g2) ∈ im( f ).

By Proposition 4.2 again, we have f (g)−1 = f (g−1) ∈ im( f ). Hence
by Proposition 2.3, im( f ) is a subgroup of H.

Definition 4.12 Given a homomorphism f : G → H, we define
the kernel of f to be the set

ker( f ) = {g ∈ G : f (g) = 1H} ⊆ G.

There is an important link between kernels and injective homomor-
phisms: a homomorphism is injective exactly when it has trivial
kernel.
Proposition 4.13 Let f : G → H be a homomorphism. Then f is
injective if and only if ker( f ) = {1}.

Proof Since 1G ∈ ker( f ), if f is injective then it must be the case
that ker( f ) = {1G}. If ker( f ) contains anything else, then that
would mean there is more than one distinct element that maps to
1H, contradicting the injectivity of f .
Conversely, suppose that ker( f ) = {1G}, and let g1, g2 ∈ G with
f (g1) = f (g2). Then 1H = f (g1)

−1 f (g2) = f (g−1
1 g2). Hence

g−1
1 g2 ∈ ker( f ) and so g−1

1 g2 = 1G, which implies that g1 = g2.
Hence f is injective.
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The image of a homomorphism is a subgroup of the codomain.
What about the kernel? The following result answers this ques-
tion: kernels are normal subgroups, and all normal subgroups are
kernels.
Proposition 4.14
(i) Let f : G → H be a homomorphism. Then ker( f ) is a normal

subgroup of G.
(ii) Let N be a normal subgroup of a group G. Then the map p : G →

G/N defined by p(g) = gN is a surjective homomorphism with
kernel N.

Richard Dedekind (1831–1916)

Emmy Noether (1882–1935)

Proof
(i) Clearly ker( f ) is a non-empty subset of G, as 1G ∈ ker( f ).

Now consider any g1, g2 ∈ ker( f ). Then

f (g1g2) = f (g1) f (g2) = 1H1H = 1H

so g1g2 ∈ ker( f ), and

f (g−1
1 ) = f (g1)

−1 = 1−1
H = 1H

so g−1 ∈ ker( f ). Hence ker( f ) is a subgroup of G by Propo-
sition 2.3.
If g ∈ G and k ∈ ker( f ), then

f (gkg−1) = f (g) f (k) f (g−1) = f (g)1H f (g)−1 = 1H,

so gkg−1 ∈ ker( f ) and therefore ker( f ) P G by Proposi-
tion 3.7.

(ii) For any a, b ∈ G we have

p(ab) = (ab)N = (aN)(bN) = p(a)p(b),

so p : G → G/N is a homomorphism. Now consider any
gN ∈ G/N. Then gN = p(g), and so p is surjective. Finally,
p(g) = 1G/N implies that gN = 1GN = N, so g ∈ N and thus
ker(p) = N.

This completes the proof.

4.3 The Isomorphism Theorems

In the last section of this chapter we will state and prove three
theorems relating quotients, homomorphisms and subgroups, due
to the German mathematicians Richard Dedekind (1831–1916) and
Emmy Noether (1882–1935).
The first of these is the most important. It is sometimes called the
Fundamental Theorem of Homomorphisms.

Theorem 4.15 (First Isomorphism Theorem) Let f : G → H
be a homomorphism with K = ker( f ). Then G/ ker( f ) ∼= im( f ).
More precisely, there is an isomorphism ϕ : G/K → im( f ) defined by
ϕ(gK) = f (g) for all g ∈ G.
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Proof We need to show three things: that the function ϕ is well-
defined, that it is bijective, and that it is a homomorphism.
The first of these is important: we need to show that ϕ(gK) =
f (g) really does define a function from G/K to im( f ). This isn’t
immediately obvious, because we can have g1K = g2K when g1 ̸=
g2, and when that happens we need to make sure that f (g1) = f (g2).
This is what we mean by checking that ϕ is well-defined.
Suppose, then, that g1, g2 ∈ G and that g1K = g2K . Then by
Proposition 2.13 it follows that g1 = g2k for some k ∈ K, and hence
f (g1) = f (g2k) = f (g2) f (k) = f (g2). So ϕ is indeed well-defined.
It is clear that ϕ is surjective: any element of im( f ) is of the form
f (g) for some g ∈ G, and by the definition of ϕ we have f (g) =
ϕ(gK). Hence any element of im( f ) is of the form ϕ(gK) for some
coset gK ∈ G/K.
To show injectivity, let g ∈ G and suppose that gK ∈ ker(ϕ). That is,
ϕ(gK) = 1H. Then f (g) = 1H, and so g ∈ K. Thus gK = K = 1G/H,
and hence ker(ϕ) = {K}. Then by Proposition 4.13, ϕ is injective,
and hence bijective.
Finally, we need to show that ϕ is a homomorphism. Suppose that
g1, g2 ∈ G. Then

ϕ((g1K)(g2K)) = ϕ((g1g2)K) = f (g1g2)

= f (g1) f (g2) = ϕ(g1K)ϕ(g2K)

and hence ϕ is a homomorphism. This completes the proof.

Let’s illustrate this by looking at an example.

Example 4.16 Let G be the Klein group V4 = {e, a, b, c} and H
be the cyclic group Z2. Define a homomorphism f : V4 → Z2 by
f (e) = f (a) = 0 and f (b) = f (c) = 1. Then ker( f ) = {e, a} and
im( f ) = Z2. Applying the First Isomorphism Theorem to f we
see that

V4/{e, a} = V4/ ker( f ) ∼= im( f ) = Z2.

We can also use the First Isomorphism Theorem together with
Lagrange’s Theorem2 to disprove the existence of surjective homo- 2 Theorem 2.18, page 21.

morphisms in some circumstances:

Example 4.17 There is no surjective homomorphism f : D9 → Z4.
If such a homomorphism existed then | im( f )| = |Z4| = 4. By the
First Isomorphism Theorem, it would be the case that G/ ker( f ) ∼=
im( f ) = Z4, and hence that | ker( f )| = |G|/| im( f )| = 18/4 = 9

2 .
This is not an integer, so no such homomorphism can exist.

Less useful for our purposes, but still worth looking at, are the
Second and Third Isomorphism Theorems. First, we state and prove
the following lemma.

Lemma 4.18 Let G be a group, let H be a subgroup of G, and let N be
a normal subgroup of G. Then the following conditions hold:
(i) HN = NH is a subgroup of G,
(ii) N is a normal subgroup of HN, and
(iii) H∩N is a normal subgroup of H.
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Proof
(i) Suppose that h ∈ H and n ∈ N, so hn ∈ HN. Then since N

is normal in G we have hn ∈ hN = Nh ⊆ NH, so HN ⊆ NH.
Similarly, nh ∈ NH, but also nh ∈ Nh = hN ⊆ HN, so
NH ⊆ HN and thus HN = NH.
To see that it is a subgroup, we use Proposition 2.3. Since
H and N are both subgroups of G, they are nonempty (each
must at the very least contain 1G) and hence HN is also
nonempty. Now suppose that h1, h2 ∈ H and n1, n2 ∈ N.
Then the products h1n1 and h2n2 both belong to HN. Since
n1h2 ∈ NH = HN, there exists some n3 ∈ N such that
n1h2 = h2n3. Then

(h1n1)(h2n2) = h1(n1h2)n2 = h1(h2n3)n2 = (h1h2)(n3n2)

which lies in HN, and so HN is closed. And for any hn ∈ HN
we have (hn)−1 = n−1h−1 ∈ NH = HN, so HN contains all
required inverses. Therefore HN ⩽ G.

(ii) It is fairly clear that N is a subgroup of HN: it is a subset of
HN and a subgroup of G, so it must therefore be a subgroup
of HN as well. Normality also follows almost immediately:
N is a normal subgroup of G and is therefore closed under
conjugation by elements of G. But HN ⊆ G, so N must also
be closed under conjugation by any elements of HN. Hence
N P HN.

(iii) By Proposition 2.9, we know that H∩N is a subgroup of
G, and since it is clearly a subset of H, it must also be a
subgroup of H. We can prove normality by showing closure
under conjugation: suppose h ∈ H and k ∈ H∩N. Then hkh−1

belongs to H, since H is closed under the group operation,
and k ∈ H∩N ⊆ H. But it must also belong to N, since N
is normal in G and hence closed under conjugation by any
element of G, including any element of H. Thus hkh−1 must
belong to the intersection H∩N, and hence H∩N P H.

This completes the proof.

Theorem 4.19 (Second Isomorphism Theorem) Let G be a group,
let H be a subgroup of G, and let N be a normal subgroup of G. Then

H/(H∩N) ∼= HN/N.

Proof Let p : G → G/N be the surjective quotient homomorphism
from Proposition 4.14 (ii), such that p(g) = gN for all g ∈ G.
Let q : H → G/N be the restriction of this homomorphism to the
subgroup H ⩽ G, and we find that im(q) is the set of cosets hN
where h ∈ H. Together, these cosets form the subgroup HN/N
of G/N, and hence im(q) = HN/N. Also, ker(q) = H∩ ker(p) =
H∩N. Applying the First Isomorphism Theorem to q we see that

H/(H∩N) = H/ ker(q) ∼= im(q) = HN/N

as claimed

For the Third Isomorphism Theorem, we need the following short
lemma:
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Lemma 4.20 Let G be a group, and let K ⊆ H ⊆ G, where H and K
are both normal subgroups of G. Then:
(i) K is a normal subgroup of H,
(ii) H/K is a normal subgroup of G/K, and

Proof
(i) This is straightforward. Firstly, K is a subgroup of G and a

subset of H, so it must be a subgroup of H. And since K is a
normal subgroup of G, it is closed under conjugation by any
element of G, including all the elements of H, so K must also
be a normal subgroup of H.

(ii) The quotient H/K is nonempty, since at the very least it
contains K = 1H/K. It is closed under the product operation
on cosets, since for any h1, h2 ∈ H we have

(h1K)(h2K) = (h1h2)K ∈ H/K.

And for any h ∈ H we have

(hK)−1 = (h−1)K ∈ H/K,

so by Proposition 2.3 H/K is a subgroup of G/K.
Now suppose that g ∈ G and h ∈ H. Then gK ∈ G/K and
hK ∈ H/K, and

(gK)(hK)(gK)−1 = (gK)(hK)(g−1K) = (ghg−1)K.

Since H is a normal subgroup of G, it follows that ghg−1 ∈ H,
so (ghg−1)K ∈ H/K, hence H/K is closed under conjugation
by elements of G/K and is therefore a normal subgroup of
G/K.

This completes the proof.

Theorem 4.21 (Third Isomorphism Theorem) Let G be a group,
and let K ⊆ H ⊆ G, where H and K are both normal subgroups of G.
Then

(G/K)/(H/K) ∼= G/H.

Proof Define f : G/K → G/H by f (gK) = gH for all g ∈ G. We
need to check that this is well-defined; that is, if g1K = g2K then
f (g1) = f (g2). This is straightforward, because K ⊆ H, so if g1K =
g2K then g1 = g2k for some k ∈ K, and so g1H = (g2k)H = g2(kH).
As k ∈ K ⊆ H, it follows that kH = H, hence g1H = g2H, and thus
f (g1) = f (g2).
We observe that im( f ) = G/H and ker( f ) = H/K, then apply the
First Isomorphism Theorem to f , to get

(G/K)/(H/K) = (G/K)/ ker( f ) ∼= im( f ) = G/H

as claimed.





5 Classification of Groups

I tried to make out the names of
plants, and collected all sorts of
things, shells, seals, franks, coins
and minerals. The passion for col-
lecting, which leads a man to be
a systematic naturalist, a virtuoso,
or a miser, was very strong in me,
and was clearly innate, as none of
my sisters or brother ever had this
taste.

— Charles Darwin (1809–1882),
in: Francis Darwin, The Life and

Letters of Charles Darwin (1887)
I 27–28So far, we have studied a number of properties of groups and seen

various examples. It would be useful to have a complete list of
small finite groups. In this chapter we will compile such a list, up
to isomorphism, of groups with eight or fewer elements. We will
then state and study a classification theorem for finitely-generated
abelian groups.

5.1 Generators and relations

Recall that a group G is a cyclic group if it is generated a single
element; that is, there exists some element g ∈ G such that G =
⟨g⟩ = {gi : i ∈ Z}. Furthermore, a cyclic subgroup is a subgroup
consisting of all powers of a single element. We want to extend this
idea now to cover groups generated by more than one element. The
details of this are complicated, and mostly beyond the scope of this
module, but the basic concepts will be sufficient for our purposes.

Definition 5.1 Let G be a group. A collection of elements g1, . . . , gr
of G are said to generate G, or be generators for G, if every el-
ement of G can be written as a product of some or all of the
elements g1, . . . , gr and their inverses.

That is, every element of the group G can be written as an expression
like g2

2g−1
3 g1g4g−1

3 g1g−2
2 , which may be of arbitrary length. Such an

expression is called a word in the generators g1, . . . , gr and their
inverses.
Example 5.2 Recall from Definition 1.27 that a group G is cyclic
if and only if it is generated by a single element.

Example 5.3 As noted in Corollary 1.43, the symmetric group Sn
is generated by the transitions in Sn. (However, there are smaller
generating sets for Sn.)

Example 5.4 The dihedral group Dn can be generated by the
rotation r and the reflection m1.

One way of defining a group is by giving a list of generators and
relations between those generators: equations saying that certain
words are equivalent to other words. If you write down the order of
the group, a list of generators, and enough relations, you can fully
describe the group up to isomorphism.
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Definition 5.5 Let X = {x1, . . .} be a (finite, infinite or empty)
set of generators, and R = {w1, . . .} be a (finite, infinite or empty)
set of relators, that is, words in the generators and their formal
inverses. Then a group G can be defined by a presentation:

G = ⟨x1, . . . : w1, . . .⟩ = ⟨X : R⟩.

Here, we form the set of all possible words in the generators xi and
their formal inverses x−1

i , and then simplify them by cancelling
any adjacent generators and their corresponding inverses, and
also replacing any instances of each word wi with the empty word
(that is, the identity).
This process determines a group, with the obvious concatenation
and reduction operation. In general, it is not obvious whether this
group will be finite or infinite.
Alternatively, we can replace the relators with relations: equations
in the generators of the form wi = 1 or equivalent.

There are lots of questions raised by this concept, including:
(i) Is there a way of deciding whether a given presentation de-

termines a finite group, and if so what its order is?1
1 Sort of. The Todd–Coxeter Algorithm
is a process for doing this, but if the
group is infinite, the algorithm won’t
terminate. And there’s no easy way of
telling whether the algorithm will never
terminate (because the group is infinite),
or just that it hasn’t terminated yet (be-
cause the group is finite but very large).

(ii) Can we tell whether two different presentations describe the
same group?2

2 Yes, in principle. Two presentations de-
termine isomorphic groups if and only
if we can change one presentation into
the other via a finite sequence of Tietze
transformations. But it’s not always
obvious what the required sequence of
transformations is.

Full answers to these and other questions can be found in the notes
for the module MA467 Presentations of Groups (if available), or the
book by D L Johnson.3

3 D. L. Johnson, Presentations of Groups,
second edition, London Mathematical
Society Student Texts 15, Cambridge
University Press (1997).

Proposition 5.6 Let G be generated by two elements a and b subject
to the relations am = 1, bn = 1 and ab = ba. Then G ∼= Zm×Zn.

Proof Since am = 1 and bn = 1, we can always replace a−1 with
am−1, and b−1 with bn−1. We can also replace ar and bs with a[r]m

and b[s]n , where [r]m denotes the remainder of r modulo m, and [s]n
denotes the remainder of s modulo n. The relation ab = ba enables
us to move all instances of the generator a in a word to the left, and
all instances of the generator b to the right.
Hence any element of G determined by the presentation

G = ⟨a, b : am, bn, ab = ba⟩
can be written in the form akbl where 0 ⩽ k < m and 0 ⩽ l < n.
There are mn distinct words of this form, so |G| = mn.
To show that G ∼= Zm×Zn, we define a function f : G → Zm×Zn
by f (akbl) = (k, l).

This function is injective: (k1, l1) = (k2, l2) if and only if ak1bl1 =
ak2bl2 . It is surjective, since any element (k, l) ∈ Zm×Zn is the
image of an element akbl ∈ G. Thus f is a bijection.

And for any elements ak1bl1 and ak2bl2 in G we have

f (ak1bl1 ak2bl2) = f (ak1+k2bl1+l2) = (k1+k2, l1+l2)

= (k1, l1)(k2, l2) = f (ak1bl1) f (ak2bl2)

so f is the required isomorphism.
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We want to prove a similar result for the dihedral groups Dn, but
first we need to look more closely at the structure of these groups.

1
m1

2 m2
3

m3

4

m4

5

m5

1
m1

2 m2

3

m3

4

m4

5

m5

6

m6

Figure 5.1: The regular pentagon P5 and
the regular hexagon P6

Let Pn denote the regular n–sided polygon with vertices labelled
1, . . . , n where vertex i has coordinates

(
cos

(2(i−1)π
n

)
, sin

(2(i−1)π
n

))
.

The element r represents an anticlockwise rotation through an angle
2π
n about the origin. The element mi represents a reflection in a

line passing through the origin, making an angle 2(i−1)π
n with the

positive horizontal axis. See Figure 5.1 for illustrations of the cases
n = 5 and 6.
We need to consider the odd and even cases separately:4

4 Here 1 ⩽ i ⩽ n, and the indices of m2i
and m2i−1 are calculated modulo n. For
example, when n = 5 and i = 4 we have
2i−1 = 7 ≡ 2 (mod 5), so m2 is the
reflection in the line passing through
vertex i = 4 and the midpoint of the
opposite edge.

• When n is odd, the reflection m2i−1 passes through vertex i and
the midpoint of the opposite edge, between vertices (i+n−1

2 ) and
(i+n+1

2 ).
• When n is even, the reflection m2i−1 passes through vertex i

and the opposite vertex (i+n
2 ), while the reflection m2i passes

through the midpoint of the edge between vertices i and (i+1),
and the midpoint of the opposite edge, between vertices (i+n

2 )
and (i+n

2+1).
We can understand the action of these operations in terms of the
way they permute the vertices of Pn.

The 2π
n anticlockwise rotation operation r shifts each vertex round

by one place, so 1 7→ 2, 2 7→ 3, . . . , n 7→ 1. This can be represented
by the permutation α = (1, 2, . . . , n) ∈ Sn.
The reflection m1 passes through the vertex 1 and either the opposite
vertex n

2+1 (if n is even) or the midpoint of the opposite edge (if n
is odd). It transposes the vertices 2 ↔ n, 3 ↔ (n−1), and so forth.
If n is even, then the vertex (n

2+1) is also fixed. We can represent
m1 by the permutation β = (2, n)(3, n−1) . . . ∈ Sn.
We can deduce that αn = 1, and also that β2 = 1: performing the
2π
n rotation n times yields the identity, while performing the m1

reflection twice also leaves every vertex unchanged.
Furthermore, we can see, either geometrically or by considering the
product of permutations, that αkβ represents the reflection operation
mk for 1 ⩽ k ⩽ n. We can therefore see that there is a bijection
between the elements of the group Dn = {1, r, . . . , rn, m1, . . . , mn}
and the set

G = {αk, αkβ : 0 ⩽ k ⩽ n}.

Again by considering the geometric operations, or composing the
permutations, we can see that βα = α−1β = αn−1β. These equations

αn = 1, β2 = 1, βα = α−1β

enable us to construct the entire Cayley table for G, which is iso-
morphic to Dn. We can calculate any of the four types of product

(αk)(αl) = αk+l (αk)(αl β) = αk+l β

(αkβ)(αl) = αk−l β (αkβ)(αl β) = αk−l

(where addition and subtraction of the exponents k and l is mod-
ulo n). This determines a presentation for the dihedral group Dn.
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Proposition 5.7 Let G be a group generated by two elements a and b
satisfying the relations an = 1, b2 = 1 and ba = a−1b. Then G ∼= Dn.

5.2 Small finite groups

We will now classify (that is, compile a complete list of) all groups
of order up to 8.
The simplest case concerns groups of prime order:

Proposition 5.8 Let G be a group with prime order |G| = p. Then G
is isomorphic to the finite cyclic group Zp.

Proof Let g ̸= 1 be a nontrivial element of G. Then |g| > 1 by
Lemma 1.18, and |g| must divide |G| = p by Proposition 2.21, so
we have |g| = p. Then 1, g, g2, . . . , gp−1 are distinct elements of
G, and there are p of them, so they comprise the entirety of G.
That is, G consists entirely of powers of g, and so it is cyclic. By
Proposition 1.28, G must be isomorphic to Zp.

Next we classify the groups of order 4. Up to isomorphism, there
are exactly two of them:

Proposition 5.9 Let G be a group of order |G| = 4. Then G is
isomorphic to either the cyclic group Z4 or the Klein group V4.

Proof First of all, we note that Z4 ̸∼= V4. This follows from Propo-
sition 1.26: any isomorphism f : Z4 → V4 must preserve the order
of each element. That is, | f (g)| = |g|. But Z4 has two elements of
order 4 while V4 has no such elements, and hence no isomorphism
can exist.
Now suppose that G = {1, a, b, c}. By Proposition 2.21, the order of
each of these elements must be a factor of 4. The identity element
has order 1 by Lemma 1.18, and is the only element that does. So
the remaining elements a, b and c must have order either 2 or 4.
Cauchy’s Theorem5 ensures the existence of at least one element5 Theorem 2.22, page 22.

of order 2. If one of the other elements, say a, has order 4, then G
has a cyclic subgroup ⟨a⟩ = {1, a, a2, a3}, which accounts for all the
elements of G and hence G ∼= Z4. Here, a2 is the element of order 2
whose existence was guaranteed by Cauchy’s Theorem.
If a, b and c all have order 2, then the cancellation laws6prop:cancellation6 Proposition

show that the product of any two must be the third. For example,
ab = b implies that a = 1, which can’t be true since we assumed
that a ̸= 1 (and also that |a| = 2). Similarly, ab = a forces b = 1,
which can’t be true for the same reason. Neither can ab = e, since
that would imply that a = b−1 = b. The only remaining possibility
is that ab = c. This yields the Klein group V4.
So G must be isomorphic to either Z4 (if it has an element of order 4)
or V4 (if it doesn’t have such an element).

Recall from Proposition 3.19 that V4
∼= Z2×Z2. So every group of

order 4 is isomorphic to either Z4 or Z2×Z2. We will explore this
further in the next section when we look at the classification of finite
and finitely-generated abelian groups.
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We have now classified groups of order 1, 2, 3, 4, 5 and 7. The next
on our list is order 6. We’ve seen two examples so far: the cyclic
group Z6 and the dihedral group D3 (which is isomorphic to the
symmetric group S3). In fact, any group of order 6 is isomorphic to
one of these.
Proposition 5.10 Let G be a group with six elements. Then G is
isomorphic to either Z6 or D3.

Proof First, we note that Z6 ̸∼= D3, since the former is abelian and
the latter isn’t.
Now suppose that G is a group of order 6. By Cauchy’s Theorem7

7 Theorem 2.22, page 22.

G has an element g of order 2 and an element h of order 3, since 2
and 3 are the prime factors of |G| = 6. These elements are distinct
from each other, and neither is equal to the identity element 1. Each
of them generates a cyclic subgroup

⟨g⟩ = {1, g} ∼= Z2, ⟨h⟩ = {1, h, h2} ∼= Z3.

There are therefore six possible elements:

G = {1, g, h, gh, h2, gh2}

Now consider the element hg. This element does not belong to
the cyclic subgroup ⟨h⟩, and it isn’t equal to g. So we have two
possibilities: either hg = gh or hg = gh2 = gh−1.
If hg = gh then by Proposition 5.6 we have G ∼= Z2×Z3. And since
2 and 3 are coprime, Z2×Z3

∼= Z6 by Proposition 3.20.

If hg = gh2 = gh−1 then by Proposition 5.7 we have G ∼= D3.
These are the only two possible cases, and so a group of order 6
must be isomorphic to either Z6 or D3.

Now we have classified groups of order up to 7. Time to look at
groups of order 8. There are a few of these that we have met (at least
in principle) already: the cyclic group Z8 and the dihedral group
D4. Other possibilities include Z2×Z4 and Z2×Z2×Z2, which by
Proposition 3.20 aren’t isomorphic to each other or to Z8. But there
is a fifth group of order 8 that we haven’t yet seen, and which we
will define now. This is called the quaternion group, and we will
denote it Q8.

E I J K −E −I −J −K
E E I J K −E −I −J −K
I I −E K −J −I E −K J
J J −K −E I −J K E −I

K K J −I −E −K −J I E
−E −E −I −J −K E I J K
−I −I E −K J I −E K −J
−J −J K E −I J −K −E I
−K −K −J I E K J −I −E

Table 5.1: Multiplication table for the
quaternion group Q8There are several ways of defining this group. One way is as the

subgroup of GL2(C) consisting of the following 8 matrices:8 8 The Pauli matrices

σx =
[

0 1
1 0

]
σy =

[ 0 −i
i 0

]
σz =

[ 1 0
0 −1

]
are particularly relevant in particle
physics, where they represent observ-
ables relating to the spin of spin– 1

2 par-
ticles such as protons, neutrons and
electrons, and in quantum computing,
where they represent an important class
of single-qubit operations.
These are related to our construction of
Q8 as follows:

I = iσz J = iσy K = iσx

E =
[

1 0
0 1

]
I =

[ i 0
0 −i

]
J =

[ 0 1
−1 0

]
K =

[
0 i
i 0

]
−E =

[ −1 0
0 −1

]
−I =

[ −i 0
0 i

]
−J =

[ 0 −1
1 0

]
−K =

[
0 −i
−i 0

]
The multiplication table for this group is shown in Table 5.1. (Note
that here we have used E rather than I for the 2×2 identity matrix.)

Proposition 5.11 Let G be a group generated by two elements a and
b that satisfy the equations a4 = 1, b2 = a2 and ba = a−1b. Then
G ∼= Q8.

Proof The first relation a4 = 1 tells us that we need only consider
positive powers of a, since we can replace any occurrence of a−1
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with a3. The first and second relations together imply that b4 = 1,
since

b4 = (b2)2 = (a2)2 = a4 = 1.
Hence we only have to consider positive powers of b, since b−1 = b3.
We can also rewrite the third relation ba = a−1b as ba = a3b.
Putting all this together, any finite word composed from the genera-
tors a and b and their inverses can be rearranged in the form akbl

where k and l are non-negative integers. Using the second relation
we can rewrite bn as either an (if n is even) or an−1b (if n is odd)
to get a word of the form ak or akb. Since a4 = 1 we know that
0 ⩽ k < 4, so G has eight elements:

G = {1, a, a2, a3, b, ab, a2b, a3b}.

The function f : G → Q8 that maps

1 7→ E a 7→ I a2 7→ −E a3 7→ −I

b 7→ J ab 7→ K a2b 7→ −J a3b 7→ −K

is an isomorphism, and so G ∼= Q8.

Just before we classify the groups of order 8, we need the following
simple lemma:

Lemma 5.12 Let G be a group, and suppose that g2 = 1 for all g ∈ G.
Then G is abelian.

Proof If g2 = 1 then g−1 = g. Then for any g, h ∈ G we have

gh = (gh)−1 = h−1g−1 = hg.

Hence G is abelian.

We are now ready to classify the groups of order 8.

Proposition 5.13 Let G be a group of order 8. Then G is isomorphic
to one of the following groups:

Z8, Z4×Z2, Z2×Z2×Z2, D4, Q8.

Proof Let G be a group with eight elements. By Proposition 2.21,
each of these elements must have order 1 (the identity), 2, 4 or 8.
We have a number of cases to consider:
Case 1 If G has an element of order 8, then the cyclic subgroup
generated by this element is

⟨g⟩ = {1, g, g2, . . . , g7}.

This subgroup has eight distinct elements and must therefore be the
entirety of G. In this case, G is a cyclic group of order 8, isomorphic
to Z8 by Proposition 1.28.
Case 2 Suppose instead that G has an element g of order 4, but no
elements of order 8. Then

⟨g⟩ = {1, g, g2, g3} ∼= Z4.

Let h be some element of G \ ⟨g⟩ and consider the coset ⟨g⟩h =
{h, gh, g2h, g3h}. Then

G = ⟨g⟩ ∪ ⟨g⟩h = {1, g, g2, g3, h, gh, g2h, g3h}.
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Consider the element hg. This clearly isn’t a power of g, and is thus
not in ⟨g⟩. Also, hg ̸= h, since the cancellation law9prop:cancellation 9 Proposition

would then imply that g = 1, which we’ve already decided is not
the case. Furthermore, if hg = g2h then g = h−1g2h, which then
implies that

g2 = (h−1g2h)2 = h−1g2hh−1g2h = h−1g4h = h−11h = h−1h = 1.

But g has order 4, so g2 ̸= e.
So we’re left with two possibilities. Either hg = gh, or hg = g3h.
Also, we have two possibilities for the order of h: either |h| = 2 or
|h| = 4. Note that h ∈ ⟨g⟩h, since h ̸∈ ⟨g⟩. Furthermore, h2 ̸= g,
since this would require |h| = 8. And h2 ̸= g3 for the same reason.
So if h has order 2 then h2 = 1, and if h has order 4 then the only
possibility is that h2 = g2.
So if G has an element of order 4 then we have four possibilities:
(i) If hg = gh and |h| = 2 then G is abelian, and G ∼= Z4×Z2 by

Proposition 5.6. The map f : G → Z4×Z2 given by g 7→ (1, 0)
and h 7→ (0, 1) is an isomorphism.

(ii) If hg = g3h and |h| = 2 then G is isomorphic to D4 by
Proposition 5.7. The map f : G → D4 with f (g) = r and
f (g) = m1 is an isomorphism.

(iii) If hg = gh and |h| = 4 then G is abelian. Also, |gh−1| = 2
since

(gh−1)2 = gh−1gh−1 = g2h−2 = g2g2 = g4 = 1.

In this case, the function f : G → Z4×Z2 given by g 7→ (1, 0)
and gh−1 7→ (0, 1) is an isomorphism.

(iv) If hg = g3h and |h| = 4 then G ∼= Q8 by Proposition 5.11.
The map f : G → Q8 where f (g) = I and f (h) = J is an
isomorphism.

Case 3 Now suppose that every element of G (apart from the
identity) have order 2. In this case, G is abelian by Lemma 5.12.
Choose g, h, k ∈ G \ {1} such that gh ̸= k. The subgroup {1, g, h, gh}
is isomorphic to the Klein group V4

∼= Z2×Z2. Now let K =
{1, k} = ⟨k⟩ ∼= Z2. Then HK = G, the intersection H∩K = {1}, and
every element of H commutes with each element of K since G is
abelian.
Therefore, by Proposition 3.18 we have

G ∼= HK ∼= H×K ∼= Z2×Z2×Z2.

There are no further cases to consider, so the proof is complete.

n Groups of order n

1 {1}
2 Z2
3 Z3
4 Z4, V4 ∼= Z2×Z2
5 Z5
6 Z6, D3 ∼= S3
7 Z7
8 Z8, Z4×Z2, Z2×Z2×Z2, D4, Q8

Table 5.2: Groups of order ⩽ 8

Table 5.2 summarises the results in this section.
Classifying groups of higher order starts to require more sophisti-
cated techniques. In particular, the cases |G| = 2k for some k tend to
be particularly tricky: there are 14 groups of order 16 and 51 groups
of order 32. Up to isomorphism there are 49 910 529 484 groups of
order ⩽ 2000, and of these 49 487 365 422 (just over 99.15%) have
order 1024.
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5.3 Finitely-generated abelian groups

Earlier, we saw that the cyclic group Z4 and the Klein group V4
∼=

Z2⊕Z2 are not isomorphic. But by Proposition 3.20 we know that
Zm⊕Zn ∼= Zmn if and only if gcd(m, n) = 1. Now we want to
generalise this idea to classify all finitely-generated abelian groups.
That is, abelian groups with finitely many generators.
We will state the classification theorem, but a full proof would
involve too much of a digression, so we’ll omit it. However, we will
study a general method for finding which abelian group a given
presentation determines.
First, we introduce a standard form for an abelian group.

Definition 5.14 Let G be an abelian group such that

G ∼= Zm1 ⊕ · · · ⊕ Zmk ⊕ Zr

where m1, . . . , mk, r ∈ Z, r ⩾ 0 and mi|mi+1 for 1 ⩽ i < k. This
is called an invariant factor decomposition of G, with torsion
coefficients or invariant factors m1, . . . , mk and rank r.
Here, Zr denotes a direct sum of r copies of Z. That is, Zr =
Z⊕ · · · ⊕Z.

Any group of this form (that is, a direct sum of finite and/or infinite
cyclic groups) is abelian. Less obviously, any abelian group has a
unique decomposition of this form.

Theorem 5.15 Let G be a finitely-generated abelian group. Then G
has a unique invariant factor decomposition

G ∼= Zm1 ⊕ · · · ⊕ Zmk ⊕ Zr

in the sense that if H is another finitely generated abelian group with
invariant factor decomposition

H ∼= Zn1 ⊕ · · · ⊕ Znl ⊕ Zs,

then G ∼= H if and only if k = l, r = s and mi = ni for 1 ⩽ i < k.

Finite abelian groups have a similar form except without any infinite
summands (copies of Z).

Corollary 5.16 Let G be a finite abelian group. Then G has a unique
invariant factor decomposition

G ∼= Zm1 ⊕ · · · ⊕ Zmk .

An element of a group is said to be a torsion element if it has
finite order. And a group is called torsion-free if it has no elements
of finite order. Torsion-free finitely-generated abelian groups are
formed from finitely many copies of Z:

Corollary 5.17 Let G be a torsion-free abelian group. Then G ∼= Zr

for some non-negative integer r.

A finitely-generated abelian group has a presentation of the form

⟨x1, . . . , xn : r1, . . . , rm⟩
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where x1, . . . , xn are the generators, and r1, . . . , rm are the relators.
We will assume further that every generator commutes with every
other generator. We can either incorporate this into the presentation
as n(n−1) relators of the form xixjx−1

i x−1
j for 1 ⩽ i < j ⩽ n,10 or 10 These can be rewritten as relations of

the form xixj = xjxi .tacitly assume them by using additive notation for our relators.
Using additive notation, our relators will be Z–linear combinations
of the generators, that is, expressions of the form

k1x1 + k2x2 + · · ·+ knxn

where k1, . . . , kn ∈ Z. Each of these relators is equal to the (additive)
identity 0, and so effectively we have a homogeneous system of
simultaneous equations with integer coefficients.
In linear algebra we learn a standard method of solving systems
of linear equations with real coefficients: we write down the aug-
mented matrix of the system and apply elementary operations to
convert it to reduced row echelon form.
The approach we use here is similar but with a couple of differences:
since our coefficients are in Z rather than R, we can’t divide a
row (or column) by an arbitrary number, so that limits one of our
elementary operations. And instead of reduced row echelon form,
we want our matrix to be in a slightly different form:



a11 0 · · · 0 0 · · · 0

0
. . .

. . .
...

...
...

...
. . .

. . . 0 0 · · · 0
0 · · · 0 arr 0 · · · 0
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


Figure 5.2: A matrix in Smith normal
form

Definition 5.18 An m×n matrix A of rank r is in Smith normal
form if every element is zero, except possibly for the diagonal
elements ai i for 1 ⩽ i ⩽ r, and furthermore that ai i|a(i+1) (i+1) for
1 ⩽ i < r.
That is, A is in the form shown in Figure 5.2, where the last (n−r)
columns and (m−r) rows are all zero.

Henry Smith (1826–1883)

Example 5.19 The following matrices are in Smith normal form:

[
1 0
0 1

]
,

[
2 0
0 6

]
,

[ 1 0 0
0 3 0
0 0 12
0 0 0

]
,

[
7 0 0 0
0 14 0 0

]
and

[ 4 0 0
0 8 0
0 0 0

]
.

We need to define the appropriate elementary row operations:

Definition 5.20 Let A be an m×n matrix with integer entries.
Then we may apply one or more of the following elementary row
and column operations to A in order to obtain a similar matrix.
E1 Swap two rows (or columns).
E2 Multiply all entries of a row (or column) by −1.
E3 Add an integer multiple of one row (or column) to another

row (or column).

The next proposition is the key to the whole problem:

Proposition 5.21 Any m×n integer matrix A can be transformed into
Smith normal form by a finite sequence of row operations of type E1, E2
and E3.
Equivalently, there exists an m×m integer matrix P and an n×n integer
matrix Q such that PAQ is an m×n matrix in Smith normal form.

The following algorithm provides a constructive proof of this fact:
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Algorithm 5.22 Assume that A is not already in Smith normal
form.

1 Use row operations of type E1 to arrange the matrix so that the
nonzero entries in the first row and first column are in ascending
order of absolute value, followed by any zero elements, so that
|a11| ⩽ |a12| ⩽ · · · ⩽ |a1s| and |a11| ⩽ |a21| ⩽ · · · ⩽ |at1|.

2 Use row and column operations of type E2 to ensure that all of
the entries a11, . . . , a1s in the first row are positive, and all of the
entries a11, . . . , at1 in the first column are also positive.

3 If a11 divides all other nonzero entries in row 1, then go to step
4.
Otherwise, let a1j be the first nonzero entry in the first row
which isn’t an integer multiple of a11. Then we can find non-
negative integers q and p such that a1j = qa11 + p where 0 ⩽
p < a11.
Apply a column operation of type E3, subtracting q times col-
umn 1 from column j.
Repeat this process for all the other columns for which the first
element is not an integer multiple of a11.
Go to step 1.

4 If a11 divides all of the other nonzero entries in the first column,
then go to step 5.
Otherwise, let ak1 be the first nonzero entry in column 1 that
isn’t an integer multiple of a11. Then we can find non-negative
integers q and p such that ak1 = qa11 + p where 0 ⩽ p < a11.
Apply an E3 row operation, subtracting q times row 1 from
row k.
Repeat this process for all the other rows for which the first
element is not an integer multiple of a11.
Go to step 1.

5 Every entry in row 1 and column 1 is now a multiple of a11.
Now apply column operations of type E3, subtracting multiples
of column 1 from each of the other columns with nonzero first
element, so that a11 is the only nonzero element on the first row.
Similarly, apply row operations of type E3, subtracting mul-
tiples of row 1 from all the other rows that have a nonzero
first element, so that a11 is left as the only nonzero element in
column 1.
The matrix is then in the form a11 0 ··· 0

0 a22 ··· a2n
...

...
...

0 am2 ··· amn


and we can apply steps 1–5 to the (m−1)× (n−1) submatrix[ a22 ··· a2n

...
...

am2 ··· amn

]
to get an m×n matrix where the only nonzero elements in the
first two rows and columns are on the diagonal. We repeat this
until we get a matrix whose only nonzero entries are on the
diagonal.
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These diagonal entries won’t necessarily satisfy the divisibility
criterion a11|a22| . . . |arr. If they don’t, we proceed to the next
step.

6 For 1 ⩽ i ⩽ r−1, compare aii with each ajj for i < j ⩽ r. Let
i and j be the lowest integers for which aii doesn’t divide ajj.
Use a row operation of type E3 to add row j to row i, and then
reduce this new m×n matrix using steps 1–5.

This algorithm will eventually terminate, yielding a matrix in Smith
normal form. Let’s try a couple of examples.

Example 5.23 Let G be the abelian group with generators x and
y, and relations

2x = 0, 3y = 0.

(This group is isomorphic to Z2⊕Z3.) This yields the coefficient
matrix A =

[
2 0
0 3

]
. Applying Algorithm 5.22 we see A is already

diagonal, so we skip to step 6. Now a11 = 2, which doesn’t divide
a22 = 3, so we perform an operation of type E3, adding row 2
to row 1, to get the matrix

[
2 3
0 3

]
. Starting again from step 1, the

matrix evolves as follows:[
2 3
0 3

]
7−→

[
2 1
0 3

]
7−→

[
1 2
3 0

]
7−→

[ 1 0
3 −6

]
7−→

[ 1 0
0 −6

]
.

We can perform a final E2 move to get
[

1 0
0 6

]
, and then read off

the new relations
x = 0, 6y = 0

which yields the group Z6, as expected from Proposition 3.20.

Example 5.24 Let G be the abelian group with four generators w,
x, y and z, and three relations

16w + 56x + 4y + 48z = 0,
4w + 16x + 4y − 8z = 0,

10w + 22x − 2y + 70z = 0.

Under the application of Algorithm 5.22, the coefficient matrix
evolves as follows:[ 16 56 4 48

4 16 4 −8
10 22 −2 70

]
E17−→

[ −2 10 22 70
4 4 16 −8
4 16 56 48

]
E27−→

[ 2 10 22 70
4 −4 −16 8
4 −16 −56 −48

]
E37−→

[ 2 0 0 0
4 −24 −60 −132
4 −36 −100 −188

]
E27−→

[ 2 0 0 0
0 24 60 132
0 36 100 188

] E37−→
[ 2 0 0 0

0 24 12 12
0 36 28 8

]
E17−→

[ 2 0 0 0
0 8 28 36
0 12 12 24

] E37−→
[ 2 0 0 0

0 8 4 4
0 12 −24 −24

]
E17−→

[ 2 0 0 0
0 4 4 8
0 −24 −24 12

]
E27−→

[ 2 0 0 0
0 4 4 8
0 24 24 −12

] E37−→
[ 2 0 0 0

0 4 0 0
0 24 0 −60

]
E17−→

[ 2 0 0 0
0 4 0 0
0 24 −60 0

]
E37−→

[ 2 0 0 0
0 4 0 0
0 0 −60 0

]
E27−→

[ 2 0 0 0
0 4 0 0
0 0 60 0

]
The corresponding relations are therefore

2w = 0, 4x = 0, 60y = 0.

The fourth generator z is free, since it has no associated relation,
and hence G ∼= Z2⊕Z4⊕Z60⊕Z.
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We can use Theorem 5.15 together with Proposition 3.20 to compile
a complete list (up to isomorphism) of finite abelian groups of a
given order.

Example 5.25 Let G be an abelian group of order 12. Then since
G must be isomorphic to a direct sum of finite cyclic groups, we
have the following possibilities:

Z12, Z2⊕Z6, Z3⊕Z4, and Z2⊕Z2⊕Z3.

By Proposition 3.20 we know that

Z3⊕Z4
∼= Z12 and Z2⊕Z2⊕Z3

∼= Z2⊕Z6.

Only two of these four satisfy the invariant factor condition,
namely Z12 and Z2⊕Z6. Hence, up to isomorphism there are two
abelian groups of order 12.

There is another classification theorem for finitely-generated abelian
groups, in which the torsion subgroups are grouped in a different
way.

Definition 5.26 Suppose that

G ∼= Zp
n1
1
⊕ · · · ⊕ Zp

nk
k
⊕ Zr

where p1, . . . , pk ∈ N are (not necessarily distinct) prime integers,
and n1, . . . , nk, r ∈ Z.
This is called a primary decomposition of G with torsion coeffi-
cients pn1

1 , . . . , pnk
k and rank r.

Theorem 5.27 A finitely-generated abelian group G has a unique
primary decomposition

G ∼= Zp
n1
1
⊕ · · · ⊕ Zp

nk
k
⊕ Zr

in the sense that if H is another finitely-generated abelian group with
primary decomposition

H ∼= Zq
m1
1

⊕ · · · ⊕ Zq
ml
l
⊕ Zs

then G ∼= H if and only if k = l, r = s and the primes p1, . . . , pk are
equal to the primes q1, . . . , qk, up to possible rearrangement.



6 Group Actions

The Earth is full of anger,
The seas are dark with wrath,

The Nations in their harness
Go up against our path:

Ere yet we loose the legions –
Ere yet we draw the blade,

Jehovah of the Thunders,
Lord God of Battles, aid!

— Rudyard Kipling (1865–1936),
Hymn Before Action (1896)

Many of the groups we’ve met so far consist of functions map-
ping from a set to itself. For example, the group Sym(X) of

permutations on a given set X, the general linear group GLn(R) of
invertible linear transformations on Rn, the dihedral group Dn of
symmetry operations on the regular n–gon. In this chapter, we will
study this situation in more detail.

6.1 Groups acting on sets

When considering groups of transformations on some set, we often
say that the group “acts on” the set. In general, we expect the
identity element to leave the set unchanged. We also expect the
transformations to behave consistently with respect to the group
operation. The following definition formalises this idea:

Definition 6.1 Let G be a group and X a set. An action of G on
X is a map · : G×X → X satisfying the following two properties:
A1 1G · x = x for all x ∈ X, and
A2 (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X.

We denote the image of (g, x) under the map · by g · x. Strictly
speaking, this is the definition for a left action of G on X. The
definition for a right action is very similar: we consider a map
· : X×G → X satisfying analogous properties. In this module we
will only study left actions, although the corresponding theory for
right actions is equivalent.

Example 6.2 If G = Sym(X) (or any subgroup of Sym(X)), then
G acts on X by setting σ · x = σ(x) for all σ ∈ Sym(X) and x ∈ X.

Example 6.3 The general linear group GLn(R) and as its various
subgroups such as SLn(R), On(R) and SOn(R), all act on Rn by
A · v = Av for all matrices A ∈ GLn(R) and vectors v ∈ Rn.

Example 6.4 The dihedral group Dn acts on the regular n–sided
polygon Pn with vertices at

(
cos

(2kπ
n
)
, sin

(2kπ
n
))

for k ∈ Z and
0 ⩽ k < n. Similarly, we can regard Dn as acting merely on the
set of vertices of Pn, rather than the entire polygon.

In each of these examples, every element of the group G determines
a permutation of the set X. That is, an element of Sym(X). This is
always the case:
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Proposition 6.5 Let · be an action of a group G on a set X. For all
g ∈ G define the map fg : X → X by fg(x) = g · x for all x ∈ X. Then
fg ∈ Sym(X), and the map ϕ : G → Sym(X) given by ϕ(g) = fg is a
homomorphism.

Proof This follows from Definition 6.1. Property A1 says that
ϕ(1G) = f1 is the identity map idX : X → X. And property A2

tells us that fg◦ fh = fgh for all g, h ∈ G, since

( fg◦ fh)(x) = fg( fh(x)) = g · (h · x) = (gh) · x = fgh(x)

for all x ∈ X. Hence

ϕ(g)ϕ(g−1) = fg◦ fg−1 = fgg−1 = f1 = idX,

and ϕ(g−1)ϕ(g) = fg−1◦ fg = f g−1g = f1 = idX.

So ϕ(g) = fg and ϕ(g−1) = fg−1 are inverse maps, which means
that ϕ(g) = fg is bijective, hence ϕ(g) = fg ∈ Sym(X).
To see that ϕ is a homomorphism, we use property A2 again. Then

ϕ(g)ϕ(h) = fg◦ fh = fgh = ϕ(gh)

for all g, h ∈ G.

Definition 6.6 Let G be a group and X be a set. The kernel of an
action · of G on X is defined to be the kernel K = ker(ϕ) of the
homomorphism ϕ : G → Sym(X) in Proposition 6.5:

K = {g ∈ G : g · x = x for all x ∈ X}.

The action is said to be faithful if K = {1}, or equivalently (by
Proposition 4.13) if ϕ is injective.

The actions in Examples 6.2, 6.3 and 6.4 are all faithful.
We can define some other actions of D6 on the regular hexagon P6:

Example 6.7 Let E = {e1, e2, e3, e4, e5, e6} be the set of edges of P6,
where e1 is the edge joining vertices 1 and 2, e2 is the edge joining
vertices 2 and 3, and so on, with e6 joining vertices 6 and 1.
We can then define an action of D6 on E with the homomorphism
ϕ : D6 → Sym(E) ∼= S6 given by

ϕ(r) = (e1, e2, e3, e4, e5, e6) and ϕ(m1) = (e1, e6)(e2, e3)(e4, e5).

This action is faithful.

Example 6.8 Let D = {d1, d2, d3} be the set of diagonals of the
hexagon P6, where d1 joins vertices 1 and 4, d2 joins vertices 2
and 5, and d3 joins vertices 3 and 6.
Then we can define an action of D6 on D by defining ϕ : D6 →
Sym(D) ∼= S3, such that

ϕ(r) = (d1, d2, d3) and ϕ(m1) = (d2, d3).

This action is not faithful: its kernel is {1, r3}.

There are a couple of important actions of a group on itself. The
first of these arises from left multiplication in the group:
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Example 6.9 We define the left regular action of a group G on
itself by setting g · x = gx for all g ∈ G and x ∈ X = G. Conditions
A1 and A2 of Definition 6.1 hold, so this is an action. If g is in
the kernel of the action, then that means that gx = x for all x ∈ G,
which implies that g = 1 by the right cancellation law, so this
action is faithful.

We have met this action before in the proof of Cayley’s Theorem.1 1 Theorem 2.10, page 19.

The permutations λg ∈ Sym(G) given by multiplying on the left by
an element g ∈ G are exactly the images ϕ(g) ∈ Sym(G) determined
by this action.
Alternatively, we can use the fact that this action is faithful, so the
kernel K is trivial. Then G ∼= G/K, and by the First Isomorphism
Theorem2 this is isomorphic to im(ϕ) ⩽ Sym(G). 2 Theorem 4.15, page 34.

Another important example is given by conjugation:

Example 6.10 The conjugation action of a group G on itself is
given by g · x = gxg−1 for all g ∈ G and x ∈ X = G.
Suppose that g is in the kernel of this action. Then this means
that gxg−1 = x for all x ∈ G, which is equivalent to saying that
gx = xg for all x ∈ G. So the kernel of this action consists of
those elements of G that commute with every element of G. This
is called the centre of the group:

Z(G) = {g ∈ G : gh = hg for all h ∈ G}.

The conjugation action will therefore be faithful only when the
group has trivial centre; for example when G = D3. But if G is
abelian, then Z(G) = G, and the action will not be faithful.

6.2 Orbits and stabilisers

Let σ = (1, 2, 4)(3, 5) ∈ S5. The cyclic subgroup G = ⟨σ⟩ ⩽ S5
generated by this permutation acts on the set X5 = {1, 2, 3, 4, 5}.
Because of the cycle decomposition of σ, all of the elements σk ∈ ⟨σ⟩
permute 1, 2 and 4 amongst themselves, and also permute 3 and 5
amongst themselves. So the action of G partitions the set X5 into
two disjoint subsets {1, 2, 4} and {3, 5}.
Recall from MA138 Sets and Numbers, MA132 Foundations or else-
where, that a partition determines an equivalence relation and vice
versa.3 We want to generalise this idea and consider the equivalence

3 Let S be a set. A relation ∼ on S is
determined by a subset R ⊆ S×S. For
any two elements x, y ∈ S, we write x∼y
if (x, y) ∈ R, and x ̸∼y if (x, y) ̸∈ R.
Thus any two elements x, y ∈ S are ei-
ther related (x∼y) or not (x ̸∼y).
A relation ∼ on a set S is said to be:
• reflexive if x∼x for all x ∈ S,
• symmetric if, whenever x∼y, then

y∼x for all x, y ∈ S, and
• transitive if, whenever x∼y and y∼z,

then x∼z for all x, y, z ∈ S.
A relation that is reflexive, symmetric
and transitive is called an equivalence
relation.
An equivalence relation partitions the
set S into equivalence classes. In par-
ticular, for any x ∈ S the corresponding
equivalence class is

[x] = {y ∈ S : x∼y}.

classes of group actions, so we introduce the following definition:

Definition 6.11 Let · be an action of a group G on a set X. We
define a relation ∼ on X, so that for any x, y ∈ X, we say x∼y if
and only if there exists some element g ∈ G such that g·x = y.
This is an equivalence relation (check this).
The equivalence classes of this relation are called orbits. The orbit
of a given element x ∈ X is defined to be

OrbG(x) = {g·x : g ∈ G}.
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The orbit OrbG(x) of a given element x ∈ X is essentially everything
in X that can be reached from x by means of the group action.
In the example concerning the group G = ⟨σ⟩ ⩽ S5, where σ =
(1, 2, 4)(3, 5), then the orbits are:

OrbG(1) = OrbG(2) = OrbG(4) = {1, 2, 4}
OrbG(3) = OrbG(5) = {3, 5}

Sometimes the action may yield a single orbit (that is, the entirety
of X), and we give such actions a special name:

Definition 6.12 An action of a group G on a set X is transitive if
it only has one orbit. Equivalently, if for any x, y ∈ X there exists
some g ∈ G such that g·x = y.

The actions in Examples 6.2, 6.4, 6.7 and 6.8 are transitive. But the
action of GLn(R) on Rn is not transitive: it has two orbits: {0} and
Rn \ {0}.
The permutation σ = (1, 2, 4)(3, 5) affects every element of the set
X5 = {1, 2, 3, 4, 5}, but the permutation τ = (3, 4) only affects 3
and 4, leaving 1, 2 and 5 unchanged. And the identity permutation
ι = ( ) leaves all of X5 fixed. It is often helpful to look at which
elements of a group G leave a particular element of X fixed:

Definition 6.13 Let a group G act on a set X, and suppose that x
is some element of X. Then the stabiliser of x in G is the subset

StabG(x) = {g ∈ G : g·x = x} ⊆ G.

That is, StabG(x) consists of the group elements that leave x fixed.

The stabiliser StabG(x) is not just a subset of G, it is a subgroup:

Proposition 6.14 Let a group G act on a set X, and suppose that x is
some element of X. Then:
(i) the stabiliser StabG(x) is a subgroup of G, and
(ii) the intersection

⋂
x∈X StabG(x) is the kernel of the action of G

on X.

Proof
(i) Since 1G acts trivially on any element x ∈ X, it follows that

1G ∈ StabG(x), and hence StabG(x) is a nonempty subset of
G. Now suppose that g, h ∈ StabG(x). Then

(gh) · x = g · (h · x) = g · x = x

so gh ∈ StabG(x). Finally,

g−1 · x = g−1 · (g · x) = (g−1g) · x = 1G · x = x

and hence g−1 ∈ StabG(x). Therefore StabG(x) ⩽ G by Propo-
sition 2.3.

(ii) For any g ∈ G, we have g ∈ ⋂
x∈X StabG(x) if and only if

g · x = x for all x ∈ X. This is equivalent to g lying in the
kernel of the action.

This completes the proof.
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Some books refer to the stabiliser StabG(x) as the isotropy sub-
group.
The following important theorem gives a strong connection between
orbits and stabilisers of a group action:

Theorem 6.15 (The Orbit–Stabiliser Theorem) Let G be a finite
group acting on a set X, and let x ∈ X. Then

|G| = |OrbG(x)| × |StabG(x)|.

Proof Let y ∈ OrbG(x). Then there exists some element g ∈ G with
g · x = y. Let H = StabG(x). For some element k ∈ G we have
k · x = y if and only if k · x = g · x, or equivalently (g−1k) · x = x,
which is the same as saying that g−1k ∈ StabG(x) = H. And by
Proposition 2.13 this means that k ∈ gH.
So the elements k ∈ G with k · x = y are exactly the elements of the
coset gH. And by Proposition 2.17, we have |gH| = |H|. That is, for
each y ∈ OrbG(x) there are exactly |H| elements k ∈ G such that
k · x = y. Hence the total number of such elements y ∈ OrbG(x)
must be |G|/|H|, so

|G| = |StabG(x)| × |OrbG(x)|
as claimed.

6.3 Conjugacy classes

Now we want to look at the orbits of the conjugation action. This
will enable us to prove a couple of important results about alternat-
ing groups.

Definition 6.16 Let G be a group, and consider the conjugation
action of G on itself. The orbits of this action are called conjugacy
classes, and we will denote the conjugacy class of a given element
g ∈ G by

ClG(g) = OrbG(g) = {hgh−1 : h ∈ G}.

What about the stabiliser StabG(g) of a given element g ∈ G? By
definition, this comprises the elements h in G for which h · g = g.
That is, all h ∈ G such that hgh−1 = g, or equivalently hg = gh. So
the stabiliser StabG(g) consists of everything in G that commutes
with the chosen element g. As noted earlier, the kernel of this action
is the centre Z(G) of the group.

Definition 6.17 Let G be a group. The centraliser of an element
g ∈ G is the subgroup

CG(g) = StabG(g) = {h ∈ G : hgh−1 = g} = {h ∈ G : hg = gh}.

Applying the Orbit–Stabiliser Theorem, we get the following result:

Proposition 6.18 Let G be a finite group and let g ∈ G. Then

|ClG(g)| = |OrbG(g)| = |G|/|StabG(g)| = |G|/|CG(g)|.

Let’s look at some examples.



56 ma267 groups and rings

Example 6.19 Let G be an abelian group. Then Z(G) = G. Also,
for any g ∈ G, the centraliser CG(g) = G, and the conjugacy class
ClG(g) = {g}.

Example 6.20 Let G = D4 = {1, r, r2, r3, m1, m1r, m1r2, m1r3}.
Then ClG(1) = {g1g−1 : g ∈ G} = {1}, and CG(1) = G.

Since rir2 = r2ri and (rim1)r2 = r2(rim1) for 1 ⩽ i < 4 we have

ClG(r2) = {r2} and CG(r2) = G.

Now ⟨r⟩ ⩽ CG(r) while rm1 = m2 ̸= m4 = m1r. Hence

4 = |r| ⩽ |CG(r)| < |G| = 8.

Lagrange’s Theorem implies that |CG(r)| = 4, so CG(r) = ⟨r⟩ =
{1, r, r2, r3}. By Proposition 6.18, it follows that

|ClG(r)| = |G|/|CG(r)| = 8/4 = 2.

And since m1rm−1
1 = r3 we have ClG(r) = {r, r3}.

Similarly, {1, m1, r2, r2m1} ⩽ CG(m1), while rm1 = m2 ̸= m4 =
m1r. Hence

4 ⩽ |CG(m1)| < |G| = 8,

and by Lagrange’s Theorem |CG(m1)| = 4. Thus

CG(m1) = {1, m1, r2, r2m1} = {1, m1, r2, m3} ∼= V4
∼= Z2×Z2.

By Proposition 6.18, we have

|ClG(m1)| = |G|/|CG(m1)| = 8/4 = 2.

Since rm1r−1 = r2m1 = m3 it must be the case that

ClG(m1) = {m1, r2m1} = {m1, m3}.

Finally, we can see that

ClG(rm1) = {rm1, r3m1} = {m2, m4}
and CG(rm1) = {1, rm1, r2, r3m1} = {1, m2, r2, m4}.

Hence the conjugacy classes of D4 are

ClG(1) = {1}, ClG(m1) = ClG(m3) = {m1, m3},

ClG(r2) = {r2} ClG(m2) = ClG(m4) = {m2, m4},

ClG(r) = ClG(r3) = {r, r3}.

The conjugacy class of a permutation in a symmetric group Sym(X)
is determined entirely by the permutation’s cycle structure. We will
prove this in two parts.

Proposition 6.21 Let σ, τ ∈ Sym(X). Then if we write σ in cycle
form, we can obtain the conjugate τστ−1 by replacing each x ∈ X in
the cycles of σ by τ(x).

Proof Suppose that (x1, . . . , xr) is a cycle of σ. Then σ(x1) = x2, and
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hence τσ(x1) = τ(x2). Furthermore, τστ−1τ(x1) = τ(x2). Similarly,
τστ−1τ(xi) = τ(xi+1) for 1 ⩽ i < r, and τστ−1τ(xr) = τ(x1).
Hence the conjugate τστ−1 has a cycle (τ(x1), τ(x2), . . . , τ(xr)).

For example, suppose σ, τ ∈ S7 such that σ = (1, 5)(2, 4, 7, 6) and
τ = (1, 3, 5, 7, 2, 4, 6), then τστ−1 = (3, 7)(4, 6, 2, 1).

Definition 6.22 Let σ ∈ Sym(X). We say that σ has cycle type
2r23r34r4 . . . if it has exactly ri cycles of length i, for i ⩾ 2.

So Proposition 6.21 says that conjugation in Sym(X) doesn’t change
the cycle type; that is, conjugate cycles in Sym(X) have the same
cycle type.
The converse holds as well, giving the following proposition.

Proposition 6.23 Two permutations in Sym(X) are conjugate if and
only if they have the same cycle type.

Proof By Proposition 6.21, two conjugate permutations in Sym(X)
have the same cycle type.
Conversely, suppose that two permutations σ, τ ∈ Sym(X) have the
same cycle type. Then we can define a bijective correspondence
between the cycles in σ and those in τ such that each cycle in σ is
paired with one of the same length in τ.
Suppose a cycle (x1, . . . , xr) in σ is paired with a cycle (y1, . . . , yr)
in τ. Then we can construct a permutation α ∈ Sym(X) such that
α(xi) = yi for 1 ⩽ i ⩽ r. Then by Proposition 6.21,

α(x1, . . . , xr)α
−1 = (α(x1), . . . , α(xr)) = (y1, . . . , yr).

We can do this for all the constituent cycles of σ to obtain an element
α ∈ Sym(X) such that ασα−1 = τ. Hence permutations with the
same cycle type are conjugate in Sym(X).

We can use this result to find the conjugacy classes of symmetric
groups Sn:

Example 6.24 The group S3 has three conjugacy classes:
cycle type conjugacy class

1 {ι}
21 {(1, 2), (1, 3), (2, 3)}
31 {(1, 2, 3), (1, 3, 2)}

Example 6.25 The symmetric group S4 has five conjugacy classes:
cycle type conjugacy class

1 {ι}
21 {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}
22 {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
31 {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4),

(1, 3, 2), (1, 4, 2), (1, 4, 3), (2, 4, 3)}
41 {(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4),

(1, 4, 3, 2), (1, 3, 4, 2), (1, 4, 2, 3)}

Things get slightly complicated with the alternating groups Alt(X).
The reason for this is that just because two even permutations are
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conjugate in Sym(X), it doesn’t necessarily mean that they are
conjugate in Alt(X).
For example, σ = (1, 2, 3, 4, 5) and τ(1, 3, 5, 2, 4) are both conjugate
in S5; in particular if we set α = (2, 3, 5, 4) ∈ S5, then ασα−1 = τ.
But α is a 4–cycle, and hence an odd permutation, so it doesn’t
belong to A5. In fact, there is no even permutation that conjugates
σ to τ. So σ and τ are conjugate in S5, but not in A5.
Sometimes the conjugacy class of a permutation in An is the same
as its conjugacy class in Sn, and sometimes it is half of the corre-
sponding class in Sn.

Proposition 6.26 Let G = Sn and H = An. Let σ ∈ H. Then either
ClH(σ) = ClG(σ) or |ClH(σ)| = 1

2 |ClG(σ)|.

Proof Since H = An ⩽ Sn = G, if α ∈ H then α ∈ G and so
ασα−1 ∈ ClG(σ). Hence ClH(σ) ⊆ ClG(σ).
Also, if α ∈ CH(σ) then α ∈ H ⩽ G and ασ = σα, so α ∈ CG(σ).
Thus CH(σ) ⊆ CG(σ).
By Proposition 6.18,

|ClG(σ)||CG(σ)| = |Sn| = 2|An| = 2|ClH(σ)||CH(σ)| (6.1)

Since CH(σ) is a subgroup of CG(σ), by Lagrange’s Theorem,44 Theorem 2.18, page 21.

|CH(σ)| divides |CG(σ)|. We thus have three possible cases:

Case 1 CH(σ) = CG(σ). Then |ClH(σ)| = 1
2 |ClG(σ)| by (6.1).

Case 2 |CH(σ)| = 1
2 |CG(σ)|. Then ClH(σ) = ClG(σ) by (6.1).

Case 3 |CH(σ)| < 1
2 |CG(σ)|. Since ClH(σ) ⩽ ClG(σ) it must be the

case that |ClH(σ)| ⩽ |ClG(σ)|, which contradicts (6.1).

Only cases 1 and 2 can occur, while case 3 is impossible. This
completes the proof.

Example 6.27 The possible cycle types for elements of A4 are
1 (the identity permutation), 22 (double transpositions) and 31

(3–cycles). The 3–cycles form two conjugacy classes.
cycle type conjugacy class size

1 {ι} 1

22 {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} 3

31 {(1, 2, 3), (4, 2, 1), (2, 4, 3), (3, 4, 1)} 4

31 {(1, 3, 2), (4, 1, 2), (2, 3, 4), (3, 1, 4)} 4

Example 6.28 We now calculate the conjugacy classes in A5. Let
G = S5 and H = A5.
Cycle type 1 The identity permutation ι = ( ) forms a conjugacy

class on its own.
Cycle type 22 Let σ ∈ A5 have cycle type 22. There are 15 per-

mutations in S5 of this cycle type, so by Proposition 6.26,
|ClH(σ)| = 15 or 15

2 . But |ClH(σ)| must be an integer, so
|ClH(σ)| = |ClG(σ) = 15|, and hence the permutations of cycle
type 22 form a single conjugacy class in A5.

Cycle type 31 There are 20 permutations of cycle type 31 in S5.
This is even, so we have to do a bit more work than the previous
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case.
Consider two such permutations

σ = (x1, x2, x3) and τ = (y1, y2, y3)

in A5, where

{x1, x2, x3, x4, x5} = {y1, y2, y3, y4, y5} = {1, 2, 3, 4, 5}.

Here, x4 and x5 are the two elements of {1, 2, 3, 4, 5} fixed by σ,
while y4 and y5 are the two elements fixed by τ. By Proposi-
tion 6.23, σ and τ are conjugate in S5. To see this, define α ∈ S5
to be the permutation

α : x1 7→ y1, x2 7→ y2, x3 7→ y3, x4 7→ y4, x5 7→ y5.

Then ασα−1 = τ.
The problem here is that α might not belong to A5. To resolve
this, let β = α(x4, x5). Then βσβ−1 = τ. Furthermore, either
α or β is an even permutation, because β is α multiplied by a
transposition. Hence either α or β belongs to A5, so σ and τ lie
in the same conjugacy class, and thus the permutations of type
31 form a single conjugacy class in A5.

Cycle type 51 Let σ be a 5–cycle in A5. There are 24 permutations
of cycle type 51 in S5, so by Proposition 6.26, |ClH(σ)| = 12 or
24. By Proposition 6.18, |ClH(σ)| divides |G| = |A5| = 60. But
24 ̸ |60, so it must be the case that |ClH(σ)| = 12. Thus the
permutations of cycle type 51 split into two conjugacy classes
in A5, each of size 12.

To summarise, A5 has five conjugacy classes:
cycle type size

1 1

22
15

31
20

51
12

51
12

6.4 Simple groups

Now we will briefly study an important class of groups. A full
discussion is very much beyond the scope of these notes, but we
will look at some relatively straightforward cases.

Definition 6.29 A group G is simple if it has no proper, nontrivial
normal subgroups. That is, if its only normal subgroups are {1}
and G itself.

Proposition 6.30 A simple abelian group G is cyclic of prime order.

Proof Let G be an abelian group. All subgroups of an abelian group
are normal, so we just need to find a proper, nontrivial subgroup to
ensure G is not simple.
Choose some element g ∈ G such that g ̸= 1. If |g| is infinite,
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then the cyclic subgroup ⟨g2⟩ is nontrivial and proper, so G is not
simple. If |g| is finite but not prime, for example |g| = mn for some
m, n ∈ Z, then the cyclic subgroup ⟨gm⟩ has order 1 < n < |G|,
and is thus proper and nontrivial. Hence |g| = p is prime, and it
must be the case that ⟨g⟩ = G, otherwise ⟨g⟩ would be a proper
nontrivial subgroup.
Hence G = ⟨g⟩ ∼= Zp.

There are infinitely many finite nonabelian simple groups. The full
classification theorem is as follows:
Theorem 6.31 Let G be a finite simple group. Then G is one of the
following four types:
(i) cyclic groups Zp of prime order,
(ii) alternating groups An for n ⩾ 4,
(iii) finite groups of Lie type,
(iv) sporadic groups.

We’ve met types (i) and (ii) already, and types (iii) and (iv) are
beyond the scope of this module and we will not discuss them fur-
ther,5 except to note that the full proof of this classification theorem5 The finite groups of Lie type are cer-

tain classes of matrix groups over finite
fields, while the sporadic groups are 26

special cases that don’t fit into the other
three categories. The smallest sporadic
group is the Mathieu group M11, which
has 7920 elements, and the largest is
the Monster, which has approximately
8×1053 elements. It’s finite, but it’s still
very large.

took hundreds of mathematicians a few decades to complete, and
is spread over several thousand pages of journal articles.
To finish this chapter, and also the part of this module concerned
with group theory, we will prove a couple of results about alter-
nating groups. Both of these results require the following simple
lemma:
Lemma 6.32 A subgroup H of a group G is normal if and only if it is
a union of conjugacy classes.

Proof By Proposition 3.7, H P G if and only if ghg−1 ∈ H for all
g ∈ G and h ∈ H. But this is the same as saying that H P G if and
only if ClG(h) ⊆ H for all h ∈ H.

The first result is one that we mentioned earlier. It is the smallest
counterexample to the converse of Lagrange’s Theorem.

Proposition 6.33 The alternating group A4 has no subgroup of order 6.

Proof Suppose that H < A4 such that |H| = 6. Since |A4| = 12,
then |A4 : H| = 2 and by Proposition 3.5 H must be a normal
subgroup of A4. By Lemma 6.32, H must be a union of conjugacy
classes, and in Example 6.27 we found that A4 has one conjugacy
class of size 1 (containing the identity element), one of size 3, and
two of size 4. The subgroup H must certainly contain the one-
element conjugacy class consisting of the identity, and then we must
find some combination of the remaining three conjugacy classes to
provide five other elements. But there is no such combination, so
the desired subgroup H can’t exist.

The proof of the following fact is similar.

Proposition 6.34 The alternating group A5 is simple.

Proof Suppose that N is a proper, nontrivial normal subgroup of
A5. Then by Lemma 6.32, N must be a union of conjugacy classes.
In Example 6.28 we found that A5 has one conjugacy class of size 1,
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15 and 20, and two of size 12. So |N| must be the sum of some or
all of the numbers 1, 12, 12, 15 and 20.
Furthermore, N must contain the identity, so 1 must be one of these
numbers. By Lagrange’s Theorem, |N| must divide |A5| = 60. But
no such combination adds up to a divisor of 60 other than 1 or 60

itself.
To see this, we know that 1 must be included in the sum. And none
of the numbers 1+12 = 13, 1+15 = 16 or 1+20 = 21 divide 60. So
any valid combination must include at least two of the numbers 12,
12, 15, 20. But then the sum is at least 1+12+12 = 25, which doesn’t
divide 60. The next smallest possibility is 1+12+15 = 28, which
also doesn’t divide 60. And the one after that is 1+12+20 = 33
which is greater than 30, the largest proper divisor of 60.
So no such normal subgroup N exists, and hence A5 is simple.
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One Ring to rule them all,
One Ring to find them,

One Ring to bring them all
and in the darkness bind them.

— J R R Tolkien (1892–1973),
The Fellowship of the Ring (1954)

Now we begin the second part of this module. So far, we’ve been
studying groups: sets equipped with a binary operation satis-

fying certain properties. Our original model for this structure was
the additive structure of the integers. But there is another familiar
operation on the set of integers: multiplication. In this section we
introduce a new algebraic structure that has two operations, one
analogous to addition and the other to multiplication.

7.1 Rings

The integers form an abelian group under addition, but the multi-
plicative structure is slightly weaker. In particular, no integer apart
from 1 and −1 has a multiplicative inverse. And although integer
multiplication is commutative, this isn’t something we’re going to
insist on in general.
We’ll start with the following definition.

Definition 7.1 A ring R = (R,+, ·) is a set R together with two bi-
nary operations + (called ‘addition’) and · (called ‘multiplication’)
satisfying the following properties:
R1 (R,+) is an abelian group. (additive group)
R2 (ab)c = a(bc) for all a, b, c ∈ R. (associativity)
R3 (a + b)c = ac + bc and a(b + c) = ab + ac for all a, b, c ∈ R.

(distributivity)
R4 There exists an element 1 = 1R ∈ R such that 1a = a1 = a

for all a ∈ R. (identity)

We will typically write ab instead of a · b. The identity element of
the group (R,+) will be denoted 0R, or usually just 0 (as with the
usual additive notation for groups).

Definition 7.2 A ring R is commutative if it satisfies the following
condition:
R5 ab = ba for all a, b ∈ R. (commutativity)

Some books omit the identity property R4 from the general defi-
nition of a ring, and give rings that do satisfy that requirement a
special name, such as unital rings, rings with unity, or rings with
1. We will adopt the convention that rings do have multiplicative
identities.
Rings satisfying only properties R1, R2 and R3 are sometimes called
nonunital rings, rings without 1, or rngs.1 These are interesting in 1 Often pronounced “rung”.
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their own right, but beyond the scope of this module.
Time for some examples.

Example 7.3 The familiar number systems Z (integers), Q (ra-
tional numbers), R (real numbers) and C (complex numbers) all
form commutative rings with the usual addition and multiplica-
tion operations.

Example 7.4 For any n ∈ N, the set Zn = {0, 1, 2, . . . , n − 1}
forms a commutative ring with addition and multiplication mod-
ulo n.

Example 7.5 The set {0} forms a ring with the (only possible)
addition and multiplication operations 0 + 0 = 0 and 0 · 0 = 0.
This is sometimes called the zero ring.

Example 7.6 If R is a ring, then the set Mn(R) or Mn×n(R) of
all n×n matrices with entries in R forms a ring under the usual
addition and multiplication operations.
Matrix rings are usually noncommutative: Mn(R) is commutative
if and only if R is the zero ring, or if R is commutative and n = 1.

Example 7.7 For a ring R, let R[x] be the set of finite-degree
polynomials with coefficients in R. Then R[x] forms a ring under
the usual addition and multiplication operations. In general, R[x]
is commutative if and only if R is.

Now for a few elementary properties.

Lemma 7.8 Let R be a ring. Then 0a = 0 = a0 and (−1)a = −a =
a(−1) for all a ∈ R.

Proof First, note that

0a = (0 + 0)a = 0a + 0a

by the distributivity condition. And by the cancellation law2 in the2 Proposition 1.14, page 5.

additive group (R,+) it follows that 0a = 0. And a0 = 0 by a very
similar argument.
Note that −a denotes the additive inverse of a, and −1 denotes the
additive inverse of 1. Then

(−1)a + 1a = ((−1) + 1)a = 0a = 0

so (−1)a = −a by the uniqueness of inverses in the group (R,+).33 Lemma 1.15, page 5.

And a(−1) = −a by a very similar argument.

Lemma 7.9 Let R be a ring. Then R has a unique multiplicative
identity element 1.

Proof Let 1 and e be two identity elements of R. Then 1 = 1e = e.
So R has a unique identity element.

Lemma 7.10 Let R be a ring such that 0 = 1. Then R = {0}.

Proof For all a ∈ R we have a = a1 = a0 = 0, so R must be the
zero ring.
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7.2 Subrings

In Chapter 2 we studied the concept of a subgroup: a subset of a
group that is a group in its own right. Now we will introduce and
study the corresponding concept for rings.

Definition 7.11 A subset S of a ring R is a subring of R if it forms
a ring under the same addition and multiplication operations as
R, with the same identity element.

Just as with the definition of a ring, some books don’t require a
subring to have the same multiplicative identity element as R, or
even an identity at all. Similarly to Proposition 2.3, the following
result gives a method of checking whether a given subset is indeed
a subring.

Proposition 7.12 Let R be a ring, and let S ⊆ R be a subset of R.
Then S is a subring of R if and only if:
(i) (S,+) is a subgroup of (R,+),
(ii) ab ∈ S for all a, b ∈ S, and
(iii) 1R ∈ S.

Proof If S is a subring of R then all three conditions hold.
Now suppose (S,+) ⩽ (R,+). Since (R,+) is abelian, so is (S,+)
thus condition R1 in Definition 7.1 holds. Properties R2 (associativ-
ity) and R3 (distributivity) hold in S because they hold in R.
Conditions (i) and (ii) ensure that the restriction of the addition and
multiplication operations of R to the subset S give valid addition
and multiplication operations for S. And condition (iii) ensures that
property R4 (identity) holds. Hence S is a ring in its own right, and
thus a subring of R.

Now we’ll look at some examples.

Example 7.13 The set Z[i] = {a + bi : a, b ∈ Z} is a subring of C.
This is the ring of Gaussian integers.

Example 7.14 The set Z[
√

2] = {a + b
√

2 : a, b ∈ Z} is a subring
of R.

Example 7.15 The set{ a
2r : a, r ∈ Z and r ⩾ 0

}
is a subring of Q.

Example 7.16 Let R be a ring, and let UTn(R) and LTn(R) be
the sets of, respectively, upper and lower triangular n×n matrices
with entries in R. These are both subrings of Mn(R).

From these examples we can see that sometimes the easiest way of
defining a ring is to present it as a subring of a ring we already know
about. This way, we can avoid defining addition and multiplication,
and prove associativity and distributivity: we just need to check
closure under +, − and ·, check that the set contains 1, and then
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use Propositions 2.3 and 7.12.
The next result is a ring-theoretic analogue of Proposition 2.9.

Proposition 7.17 Let R be a ring, and let S and T be subrings of R.
Then the intersection S∩T is also a subring of R.

Proof Since S and T are both subrings of R, then both (S,+) and
(T,+) are additive subgroups of (R,+), and by Proposition 2.9,
(S∩T,+) is an additive subgroup of (R,+).
Now suppose that a, b ∈ S∩T. Then since S is a subring of R, the
product ab ∈ S. And similarly ab ∈ T since T is a subring of R. So
ab ∈ S∩T.
Finally, since S and T are both subrings of R, it follows that 1 ∈ S
and 1 ∈ T, so 1 ∈ S∩T. Therefore, by Proposition 7.12, S∩T is a
subring of R.

7.3 Isomorphisms and direct products

When we first started studying groups, we formulated and explored
the concept of an isomorphism,4 a structure-preserving bijection4 Definition 1.24, page 8.

between groups. Now we want to formulate the corresponding
notion for rings. Since rings are effectively additive abelian groups
with some extra structure, we want an (additive abelian) group
homomorphism that also respects the multiplicative structure.

Definition 7.18 Let R and S be rings. Then a function f : R → S
is an isomorphism if:
(i) f is a bijection,
(ii) f (r1 + r2) = f (r1) + f (r2) for all r1, r2 ∈ R, and
(iii) f (r1r2) = f (r1) f (r2) for all r1, r2 ∈ R.
We say that R and S are isomorphic if there is an isomorphism
between them. If so, we write R ∼= S.

Ring isomorphisms satisfy similar properties to group isomor-
phisms:

Lemma 7.19 Let R and S be rings, and suppose that f : R → S is an
isomorphism. Then:
(i) f (0R) = 0S, and
(ii) f (1R) = 1S.

Proof The first of these follows from Proposition 4.2: since f : R →
S is an isomorphism, we know that f (0R) = 0S.
To prove the second property, let s ∈ S and suppose that s = f (r)
for some r ∈ R (such an element r exists because f is surjective).
Then

s f (1R) = f (r) f (1R) = f (r1R) = f (r) = s
and f (1R)s = f (1R) f (r) = f (1Rr) = f (r) = s

which means that f (1R) is an identity of S. It follows from Lemma 7.9
that f (1R) = 1S.
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Definition 7.20 Let R and S be rings. Their direct product R×S
is the cartesian product

R×S = {(r, s) : r ∈ R, s ∈ S}

of ordered pairs of elements from R and S, with the obvious
component-wise addition and multiplication operations:

(r1, s1) + (r2, s2) = (r1+r2, s1+s2)

(r1, s1)(r2, s2) = (r1r2, s1s2)

for all r1, r2 ∈ R and s1, s2 ∈ S.
It is straightforward to check that R×S is a ring under these
operations. The multiplicative identity element is 1R×S = (1R, 1S).

Earlier,5 we saw that the direct product G×H of two groups G and 5 Proposition 3.17, page 29.

H contains a subgroup G×{1H} isomorphic to G and a subgroup
{1G}×H isomorphic to H. The corresponding property doesn’t
hold in general for rings, however. The elements of the form (r, 0S)
form a ring isomorphic to R, but the identity element of this ring is
(1R, 0S), whereas the identity element of R×S is 1R×S = (1R, 1S).
The following important theorem is related to Proposition 3.20. It is
usually called the Chinese Remainder Theorem, and its earliest known
statement occurs in a mathematical treatise called Sun Tzu Suan
Ching (‘The Mathematical Classic of Sun Tzu’) written sometime
during the third to fifth centuries CE and attributed to a mathemati-
cian named Sun Tzu6 (or Sunzi).7,8 There have been suggestions 6 ‘Master Sun’.

7 This Sun Tzu is a different person to
the military strategist who wrote The
Art of War, and lived during the sixth
century BCE.
8 Later discussions of the theorem occur
in the work of the Indian mathemati-
cians Aryabhata and Brahmagupta in
the sixth and seventh centuries CE, and
the Liber Abaci of Leonardo of Pisa (Fi-
bonacci) in 1202 CE. The earliest known
complete solution occurs in the Shushu
Chuichang or Mathematical Treatise in Nine
Sections, written by the Chinese mathe-
matician Qin Jiushao in 1247 CE.

that it be named after its original discoverer.

Theorem 7.21 (Chinese Remainder Theorem / Sun Tzu’s Theo-
rem) The rings Zm×Zn and Zmn are isomorphic if and only if m and
n are coprime; that is, if gcd(m, n) = 1.

Proof If m and n are not coprime, then their least common multiple
l = lcm(m, n) < mn. The additive abelian groups (Zm×Zn,+) and
(Zmn,+) are not isomorphic, because the order of 1 in (Zmn,+) is
mn, but for any element (a, b) ∈ Zm×Zn we have l(a, b) = (la, lb) =
0, so no element of Zm×Zn has order mn, and so by Proposition 1.26

there is no isomorphism from Zm×Zn → Zmn.
Conversely, suppose that m and n are coprime, and let [x]m denote
the residue of x modulo m. We now define f : Zmn → Zm×Zn by
f (x) = ([x]m, [x]n).
It is clear that f (x + y) = f (x) + f (y) and f (xy) = f (x) f (y) for all
x, y ∈ Zmn, so the structural conditions are satisfied.
We must now show that f is a bijection. If f (x) = f (y) then
[x]m = [y]m and [x]n = [y]n, so m and n both divide (x−y). But
since m and n are coprime, this implies that mn divides (x−y) and
hence [x]mn = [y]mn. Hence f is injective. And since |Zm×Zn| =
|Zmn| = mn, f must be surjective too. Thus f is a bijective ring
homomorphism, and hence an isomorphism.

We can prove the following corollary by induction on k.
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Corollary 7.22 If n = pn1
1 . . . pnk

k is a decomposition of n into a product
of distinct primes, then

Zn ∼= Zp
n1
1
× · · · × Zp

nk
k

as rings.

7.4 Integral domains and fields

For any two integers a, b ∈ Z we have ab = 0 only when either a
or b is zero (or both). However, this property isn’t shared by all
rings: for example, the nonzero matrices A =

[
1 0
0 0

]
and B =

[
0 0
0 1

]
in M2(R) multiply to give AB =

[
0 0
0 0

]
= BA.

Definition 7.23 Let R be a ring. Then a nonzero element a ∈ R is
a left zero divisor if there exists a nonzero element x ∈ R such
that ax = 0. Similarly, a nonzero element b ∈ R is a right zero
divisor if there exists some nonzero element y ∈ R such that
yb = 0. An element that is both a left and right zero divisor is
called a two-sided zero divisor.

In this terminology, we can say that Z has no zero divisors, while
the matrix ring M2(R) does have zero divisors.
Rings that contain no zero divisors, and in which we can assume
that ab = 0 implies that either a = 0 or b = 0 (or both), are
particularly important, and we give them a special name:

Definition 7.24 An integral domain (or a domain) is a nontrivial
commutative ring R that has no zero divisors. That is, if ab = 0
then either a = 0 or b = 0 (or both) for all a, b ∈ R.

Let’s look at some examples.

Example 7.25 The rings Z, Q, R and C are all integral domains.

Example 7.26 Let R and S be commutative rings. Their direct
product R×S is not an integral domain. In particular, for any
r ∈ R and s ∈ S, the elements (r, 0) and (0, s) are zero divisors,
because (r, 0)(0, s) = (0, 0) = (0, s)(r, 0).

Example 7.27 Every subring of an integral domain is an integral
domain. The reason for this is that if R is an integral domain, and
S is a subring of R, then if R doesn’t contain any zero divisors,
neither does S.
For example, the rings Z[i] and Z[

√
2] are integral domains.

Proposition 7.28 The ring Zn is an integral domain if and only if n
is prime.

Proof If n = 1 then Zn = {0} is the zero ring, which isn’t a domain.
If n = ab with 1 < a, b < n, then ab = 0 with a, b ̸= 0 in Zn, so Zn
is not a domain.
If n is prime, then n does not divide ab for any 0 < a, b < n, so
ab ̸= 0 in Zn and hence Zn is an integral domain.
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Since a ring is an abelian group under addition, the additive can-
cellation laws9 apply, but the same is not in general true for multi- 9 Proposition 1.14, page 5.

plication. However, the following proposition confirms that multi-
plicative cancellation laws hold in an integral domain:

Proposition 7.29 Let R be an integral domain. Suppose that a, b, c ∈
R with a ̸= 0 and either ab = ac or ba = ca, then b = c.

Proof Suppose that ab = ac. Then by the distributive law we have
ab − ac = a(b − c) = 0. And since R is a domain with a ̸= 0 that
means that b − c = 0, and hence b = c.
The proof for ba = ca is very similar.

Every element in a group has a unique inverse, and every element
in a ring has an additive inverse. But not every element in a ring
need have a multiplicative inverse. Those that do are worthy of a
special name:

Definition 7.30 Let R be a ring. An element a ∈ R is a unit if
it has a two-sided inverse under multiplication; that is, if there
exists b ∈ R such that ab = 1 = ba.

These invertible elements form a group:

Proposition 7.31 Let R be a ring, and denote by R∗ the set of all units
in R. Then R∗ forms a group under multiplication. This is called the
group of units of the ring R.

Proof If a ∈ R∗ is a unit, then it has an inverse a−1. This inverse
must also belong to R∗, because it is also invertible with inverse a.
Hence every element of R∗ has an inverse.
We need to check that R∗ is closed under multiplication. To see this,
consider two elements a, b ∈ R∗. Being units, they have inverses a−1

and b−1 in R∗. And by Lemma 1.16, ab is invertible, with inverse
b−1a−1. So the restriction to R∗ of the multiplication operation in R
is a valid binary operation on R∗.
This operation is associative, since multiplication in R is associative.
And finally, the multiplicative identity element 1 ∈ R is its own
inverse, and thus belongs to R∗. Hence R∗ is a group.

Example 7.32 The ring Z of integers has only two units, namely
1 and −1. So Z∗ = {1,−1} ∼= Z2.

Example 7.33 The group Un = {m ∈ Zn : gcd(m, n) = 1} intro-
duced in Example 1.8 is the group of units of the ring Zn.

Example 7.34 In the rings Q, R and C, every nonzero element is
a unit, so we have

Q∗ = Q \ {0}, R∗ = R \ {0}, C∗ = C \ {0}.

In the first and third of these examples we see the extremes of the
possible outcomes. In Z, the minimum possible number of elements
(namely 1 and −1) are units, while in Q, R and C everything but
zero is a unit. This latter case is important, and we give it a couple
of special names:



70 ma267 groups and rings

Definition 7.35 A nonzero ring R is said to be a division ring if
R∗ = R \ {0}; that is, if every nonzero element is a unit.
A commutative division ring is called a field.

There is a strong connection between fields and integral domains:

Proposition 7.36 Every field is an integral domain.

Proof Let F be a field. Suppose there exist nonzero elements a, b ∈
F \ {0} = F∗ such that ab = 0. Then a has a multiplicative inverse
a−1, so

b = 1b = a−1ab = a−10 = 0,

which contradicts the assumption that b ̸= 0. So F must be an
integral domain.

Proposition 7.37 Every finite integral domain is a field.

Proof Let R = {r0, r1, . . . , rn} be a finite integral domain, with
r0 = 0. By the multiplicative cancellation laws in Proposition 7.29,
for fixed i > 0, the n products rirj (where 1 ⩽ j ⩽ n) are all distinct
and nonzero. Since there are n possible values for these n products,
they all occur exactly once. In particular, there is some j such that
rirj = 1, and hence ri is a unit, with r−1

i = rj. Thus R is a field.

Corollary 7.38 The ring Zn is a field if and only if n is prime.

Proof This follows from Propositions 7.28 and 7.37.

Definition 7.39 Let R be a ring. If there exists a positive integer
n such that na = 0 for all a ∈ R, then we call the smallest such
positive integer the characteristic of R, denoted char(R). If no
such positive integer exists, we say that R has characteristic 0.

Example 7.40 The ring Zn has characteristic n.

Example 7.41 The rings Z, Q, R and C have characteristic 0.

Example 7.42 The polynomial ring R[x] has the same characteris-
tic as R.
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Mrs Erlynne: Ideals are dangerous
things. Realities are better. They
wound, but they’re better.
Lady Windermere: If I lost my ide-
als, I should lose everything.

— Oscar Wilde (1854–1900),
Lady Windermere’s Fan (1893)

Next, we want to develop ring-theoretic concepts analogous to
homomorphisms, normal subgroups and quotient groups.

8.1 Homomorphisms

First we begin with the concept of a ring homomorphism. This is
very similar to the concept of a group homomorphism, and indeed
we’ve met the bijective case already when we defined the notion of
a ring isomorphism.1 So we will define a ring homomorphism to 1 Definition 7.18, page 66.

be the more general case where we don’t require bijectivity:

Definition 8.1 Let R and S be rings. A ring homomorphism is a
function f : R → S that satisfies the following conditions:
(i) f (r1 + r2) = f (r1) + f (r2) for all r1, r2 ∈ R,
(ii) f (r1r2) = f (r1) f (r2) for all r1, r2 ∈ R, and
(iii) f (1R) = 1S.
A (ring) monomorphism is an injective ring homomorphism, and
a (ring) epimorphism is a surjective ring homomorphism.

From Proposition 4.2 it follows that f (0R) = 0S, and f (−a) = − f (a)
for all a ∈ R. It doesn’t necessarily follow that f (1R) = 1S from the
additive and multiplicative conditions (i) and (ii) in Definition 8.1,
so we incorporate it into the definition explicitly.2 2 However, in some books (especially

those that don’t require rings to have
multiplicative identity elements) ring
homomorphisms aren’t by default re-
quired to satisfy this condition, and ones
which do are sometimes called unital
homomorphisms.

Example 8.2 For any n ∈ N, the “reduction modulo n” operation
determines a ring homomorphism f : Z → Zn given by m 7→
[m]n.

Example 8.3 Complex conjugation determines a ring homomor-
phism f : C → C given by z 7→ z̄.

More generally, a homomorphism f : R → R from a ring to itself is
called a (ring) endomorphism, and an isomorphism from a ring to
itself is called a (ring) automorphism.

Example 8.4 If f : R → S is a ring homomorphism, then there is
an induced homomorphism f : R[x] → S[x] defined by

f (anxn + · · ·+ a1x + a0) = f (an)xn + · · ·+ f (a1)x + f (a0).

We can define an induced homomorphism f : Mn(R) → Mn(S)
on matrix rings in a similar way.



72 ma267 groups and rings

Example 8.5 Let R be a ring, and let R[x] be the ring of finite-
degree polynomials with coefficients in R. Choose a fixed element
a ∈ R. The map eva : R[x] → R given by

eva(p) = p(a)

for all polynomials p ∈ R[x], is called the evaluation map or eval-
uation homomorphism at a ∈ R. (Important examples include
the cases where R = R or R = C.)
This is a ring homomorphism, since

eva(p + q) = (p + q)(a) = p(a) + q(a) = eva(p) + eva(q),
eva(pq) = (pq)(a) = p(a)q(a) = eva(p)eva(q)

and eva(1R) = 1R

for all p, q ∈ R[x].

Example 8.6 Let R be a commutative ring of prime characteristic
p; that is, pa = 0 for all a ∈ R. Then the map f : R → R given by
f (a) = ap is a homomorphism. The multiplicative condition

f (ab) = (ab)p = apbp = f (a) f (b)

is straightforward. The additive condition

f (a + b) = (a + b)p = ap + bp = f (a) + f (b)

is less obvious, and holds because the commutativity in R implies

(a + b)p = ap + bp +
p−1

∑
k=1

p!
k!(p − k)!

akbp−k

and all the binomial coefficients in the sum are divisible by p.

Now we want to look at images and kernels of ring homomor-
phisms, as we did for group homomorphisms. The definition of the
image of a ring homomorphism is straightforward:

Definition 8.7 Let f : R → S be a ring homomorphism. Then the
image of f is

im( f ) = { f (r) : f ∈ R}.

The image of a group homomorphism is a subgroup of its codomain.
Something very similar happens with ring homomorphisms:

Proposition 8.8 Let f : R → S be a ring homomorphism. Then the
image im( f ) is a subring of the codomain S.

Proof By Proposition 4.11, (im( f ),+) is a subgroup of (S,+). And
since f (1R) = 1S, the identity 1S ∈ im( f ).
Now suppose that s1, s2 ∈ S. Then there exist r1, r2 ∈ R such that
f (r1) = s1 and f (r2) = s2. And

s1s2 = f (r1) f (r2) = f (r1r2)

so s1s2 ∈ im( f ). Hence im( f ) is a subring of S.

We need to think a little bit about how to define the kernel of a
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ring homomorphism f : R → S. We want to consider the elements
in R that map to the identity in S, but we have two identities to
consider: the additive identity 0S and the multiplicative identity
1S. We will choose the additive identity 0S: a ring is an abelian
group with extra structure, so this way we ensure that the kernel of
a ring homomorphism is effectively the kernel of an abelian group
homomorphism with some extra structure.

Definition 8.9 Let f : R → S be a ring homomorphism. Then the
kernel of f is

ker( f ) = {r ∈ R : f (r) = 0S}.

By Proposition 4.13, a ring homomorphism is injective if and only if
its kernel is trivial.
Now consider the “reduction modulo n” homomorphism f : Z →
Zn given by f (m) = [m]n. The kernel of this map is the set nZ of
multiples of n. This is not a subring of Z, since it doesn’t contain
1 ∈ Z.
So in general, the kernel of a ring homomorphism isn’t necessarily
a subring of its domain.3 3 As noted earlier, some books don’t re-

quire a ring or a subring to contain a
multiplicative identity, and therefore do
consider the kernel of a ring homomor-
phism to be a subring of its domain.

Proposition 8.10 Let f : R → S be a ring homomorphism. Then
kr ∈ ker( f ) and rk ∈ ker( f ) for all r ∈ R and k ∈ ker( f ).

Proof If r ∈ R and k ∈ ker( f ), then

f (kr) = f (k) f (r) = 0S f (r) = 0S

and f (rk) = f (r) f (k) = f (r)0S = 0S

so kr ∈ ker( f ) and rk ∈ ker( f ).

8.2 Ideals

The next question we want to answer is: what is the ring-theoretic
analogue of a normal subgroup? In Proposition 4.14 we found
that kernels of group homomorphisms are normal subgroups, and
every normal subgroup can be viewed as the kernel of some homo-
morphism. So we will use kernels of ring homomorphisms as the
motivation for the following definition:

Definition 8.11 A subset I of a ring R is an ideal of R if:
I1 I is a subgroup of (R,+), and
I2 kr ∈ I and rk ∈ I for all r ∈ R and k ∈ I.

Condition I2 is sometimes called the absorption condition.
Proposition 8.10 tells us that for any ring homomorphism f : R → S,
the kernel ker( f ) is an ideal of R.
The next proposition describes what happens if an ideal contains
the multiplicative identity 1:

Proposition 8.12 Let I be an ideal of a ring R. If 1R ∈ I then I = R.

Proof The absorption conditions I2 imply that kr ∈ I and rk ∈ I
for all r ∈ R and k ∈ I. In particular, setting k = 1, it follows that
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1r = r = r1 ∈ I for all r ∈ R, and hence R ⊆ I. And I ⊆ R by
definition, so I = R.

In fact, the same thing happens if an ideal contains a unit:

Proposition 8.13 Let I be an ideal of a ring R. If I contains a unit a,
then I = R.

Proof The absorption conditions I2 again imply that ar ∈ I and
ra ∈ I for all r ∈ R. Setting r = a−1 we see that aa−1 = 1 = a−1a ∈ I,
and then by Proposition 8.12 it follows that I = R.

An important class of ideals are those generated by a single element.

Example 8.14 The kernel of the “reduction modulo n” homomor-
phism f : Z → Zn is an ideal:

ker( f ) = nZ = {nm : m ∈ Z}

More generally, we have the following:

Definition 8.15 Let R be a ring, and suppose that a ∈ R. The
principal ideal of R generated by a is the ideal

(a) =
{ k

∑
i=1

riasi : ri, si ∈ R
}

.

If R is commutative, then this simplifies to

(a) = {ra : r ∈ R}.

We will only be concerned with principal ideals of commutative
rings in this module.

Example 8.16 The principal ideals of Z are exactly those of the
form (n) = nZ for n ∈ N. We will see later that these are the
only ideals of Z.

Example 8.17 Let F be a field, and set R = F[x], the polynomial
ring over F. The principal ideal (x) consists of all polynomials
with zero constant term; that is, those of the form

p = anxn + · · ·+ a1x.

8.3 Quotient rings

Possibly the most important aspect of normal subgroups is that we
can use them to form quotient groups. The same is true for ideals.
Since an ideal I of a ring R is a subgroup of the additive group
(R,+), we can consider its cosets

I+a = {k + a : k ∈ R}.

We know from Proposition 3.11 that these cosets form a group under
addition, with the operation

(I+a) + (I+b) = I+(a+b)

for all a, b ∈ R. We just need to define a suitable multiplication
operation and we get a ring:
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Proposition 8.18 Let I be an ideal of a ring R. The cosets of I form
a ring under addition in the quotient group, and the multiplication
operation

(I+a)(I+b) = I+ab

for all a, b ∈ R. This is the quotient ring R/I.

Proof We know from Proposition 3.11 that R/I forms a group under
addition, so axiom R1 in Definition 7.1 is satisfied.
We need to check that the multiplication in R/I is well-defined. To
do this, suppose that I+a = I+r and I+b = I+s. Then (a−r) and
(b−s) belong to I, and so

ab = ab − as + as − rs + rs = a(b−s) + (a−r)s + rs.

Hence
ab − rs = a(b−s) + (a−r)s.

But by the absorption condition I2, it follows that a(b−s) ∈ I, since
(b−s) ∈ I. And (a−r)s ∈ I, since (a−r) ∈ I. So ab − rs ∈ I,
and hence I+ab = I+rs. The multiplication operation is therefore
well-defined.
Properties R2 (associativity) and R3 (distributivity) follow automati-
cally because they hold in R.
Finally, we set 1R/I = I+1R. Then for any I+a we have

(I+a)(I+1R) = I+a1R = I+a
and (I+1R)(I+a) = I+1Ra = I+a

so property R4 (existence of an identity) holds, and R/I is a ring.

Example 8.19 The quotient ring Z/(n) is isomorphic to Zn. The
isomorphism f : Zn → Z/(n) is given by f (m) = m+(n).

8.4 The Isomorphism Theorems

There are ring-theoretic versions of the First,4 Second5 and Third 4 Theorem 4.15, page 34.
5 Theorem 4.19, page 36.Isomorphism Theorems.6 We will state all three, but only prove the
6 Theorem 4.21, page 37.first:

Theorem 8.20 (First Isomorphism Theorem) Let f : R → S be a
ring homomorphism with kernel I. Then R/I ∼= im( f ). More precisely,
there is an isomorphism ϕ : R/I → im( f ) defined by ϕ(I+a) = f (a)
for all a ∈ R.

Proof By the First Isomorphism Theorem for groups,7 ϕ is a well- 7 Theorem 4.15, page 34.

defined isomorphism of additive abelian groups. In particular, ϕ is
a bijection. Furthermore,

ϕ((I+a)(I+b)) = ϕ(I+ab) = f (ab) = f (a) f (b) = ϕ(I+a)ϕ(I+b)

for all a, b ∈ R. Hence ϕ is a ring isomorphism.

We will apply this to our standard example:
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Example 8.21 Let f : Z → Zn be the “reduction modulo n” homo-
morphism. This is surjective and has kernel ker( f ) = (n), so by
the First Isomorphism Theorem we have Z/(n) = Z/ ker( f ) ∼=
im( f ) = Zn.

The Second and Third Isomorphism Theorems are as follows:

Theorem 8.22 (Second Isomorphism Theorem) Let R be a ring,
let S be a subring of R, and let I be an ideal of R. Then

(S+I)/I ∼= S/(S∩I).

Theorem 8.23 (Third Isomorphism Theorem) Let R be a ring,
and let I and J be ideals of R such that I ⊆ J. Then

(R/J)/(I/J) ∼= R/I.

The first of these requires the following lemma:

Lemma 8.24 Let R be a ring, let S be a subring of R, and I and ideal
of R. Then
(i) S+I is a subring of R,
(ii) I is an ideal of S+I, and
(iii) S∩I is an ideal of S.
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I never could do anything with fig-
ures, never had any talent for math-
ematics, never accomplished any-
thing in my efforts at that rugged
study, and to-day the only mathe-
matics I know is multiplication, and
the minute I get away up in that,
as soon as I reach nine times seven
. . . I’ve got it now. It’s eighty-four.
Well, I can get that far all right with
a little hesitation. After that I am un-
certain, and I can’t manage a statis-
tic.

— Mark Twain (Samuel Langhorne
Clemens) (1835–1910),

In Aid of the Blind (29 March 1906),
Mark Twain’s Speeches (1910)

322–332

In this last chapter, we will look at notions of divisibility in integral
domains,1 and generalise the notion of a prime or irreducible

1 Unless otherwise stated, we will be
working with integral domains rather
than more general rings in this chapter.

number to an arbitrary ring. We will then study three important
classes of integral domains, each of which shares certain important
properties with the ring Z of integers.

9.1 Divisibility

We’ll start with the following definition:

Definition 9.1 Let a, b ∈ R be elements of an integral domain R.
We say that a divides b if there exists some r ∈ R such that b = ar.

The following lemma draws a number of important connections
between divisibility and principal ideals.

Lemma 9.2 Let R be an integral domain. The following statements are
equivalent for all a, b ∈ R:
(i) a|b,
(ii) b ∈ (a), and
(iii) (b) ⊆ (a).

Proof To see that (i) implies (ii), suppose that a|b. Then b = ar for
some r ∈ R. Thus b ∈ (a) = {as : s ∈ R}.
To show that (ii) implies (iii), if b ∈ (a) then b = ar for some r ∈ R
and so

(b) = {bt : t ∈ R} = {(ar)t : t ∈ R} = {a(rt) : t ∈ R} ⊆ (a).

Finally, if (b) ⊆ (a) then

(b) = {bt : t ∈ R} ⊆ {as : s ∈ R} = (a).

Hence b ∈ (a) and so b = ar for some r ∈ R, which confirms that
(iii) implies (i). Thus all three statements are equivalent.

We now want to consider the case where two elements are divisible
by each other.

Definition 9.3 Let R be an integral domain. Two elements a, b ∈
R are associate (written a ∼ b) if both a|b and b|a.

If we think about when this happens in our most familiar ring Z,
we can see that two integers m and n divide each other exactly when
either m = n or m = −n. That is, when one is equal to ±1 times the
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other. What is special about 1 and −1? They are the units (invertible
elements) in Z. This observation leads us to the following lemma.

Lemma 9.4 The following statements are equivalent for any elements
a and b in an integral domain R:
(i) a ∼ b,
(ii) (b) = (a), and
(iii) there exists a unit q ∈ R with a = qb.

Proof The equivalence of statements (i) and (ii) follows quickly
from Lemma 9.2: if a ∼ b then a|b and b|a, which is equivalent to
saying that (b) ⊆ (a) and (a) ⊆ (b), which occurs if and only if
(b) = (a).
To show that (i) implies (iii), suppose first that a = 0. Then a ∼ b is
equivalent to saying that b = 0. So now assume that a, b ̸= 0. There
exist q, r ∈ R such that a = qb and b = ra. Then a = qb = q(ra) =
(qr)a, so a(1 − qr) = 0 and since a ̸= 0 and R is an integral domain,
it must be the case that 1 − qr = 0, so qr = 1 and thus q is a unit.
Proving that (iii) implies (i) is straightforward. If a = qb for some
unit q ∈ R, then a|b. Furthermore b = q−1a, and hence b|a, which
means that a ∼ b.

Example 9.5 In Z, the only units are ±1 so a ∼ b if and only if
a = ±b; that is, |a| = |b|.

Example 9.6 Let F be a field, and consider the polynomial ring
F[x]. The units in F[x] are the nonzero constants, so a ∼ b if and
only if a = rb for some r ∈ F \ {0}.
Note also that every polynomial in F[x] is associate to a unique
monic polynomial (that is, one with leading coefficient 1). Given

f = anxn + · · · a1x + a0 ∈ F[x],

with a0, . . . , an ∈ F and an ̸= 0, we can define a monic polynomial

g = xn + an−1
an

xn−1 + · · ·+ a1
an

x + a0
an

∈ F[x]

with f = ang. Hence f ∼ g.

We can form the greatest common divisor2 and least common2 Or highest common factor.

multiple of two integers, and now we want to generalise these ideas
to arbitrary domains.

Definition 9.7 Let R be an integral domain, and suppose that
a, b ∈ R. A greatest common divisor gcd(a, b) (or highest com-
mon factor hcf(a, b)) of a and b is an element d such that:
(i) d|a and d|b, and
(ii) for any c ∈ R with c|a and c|b, then c|d.
Similarly, a least common multiple lcm(a, b) is an element l ∈ R
such that:
(i) a|l and b|l, and
(ii) for any m ∈ R with a|m and b|m, then l|m.

We can generalise this definition in an obvious way to define the
gcd or lcm of any set of elements of R.
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Note also that gcd(0, a) = a and lcm(0, a) = 0 for any a ∈ R.
Strictly speaking, greatest common divisors and least common
multiples aren’t unique: for example in Z, both 2 and −2 are
greatest common divisors of 4 and 6. In general, they are defined
up to multiplication by a unit (in this case ±1). However, we
will sometimes abuse terminology and notation by speaking of the
greatest common divisor of two elements and writing gcd(4, 6) = 2
(or alternatively gcd(4, 6) = −2).

Proposition 9.8 Let R be an integral domain, and let a, b ∈ R. If
c, d ∈ R are greatest common divisors of a and b, then c ∼ d. And if
l, m ∈ R are least common multiples of a and b, then l ∼ m.

This follows almost immediately from Definition 9.7.

Proof Since c and d are greatest common divisors of a and b, we
have c|d and d|c, so c ∼ d.
And since l and m are least common multiples of a and b, we have
l|m and m|l, so l ∼ m.

Greatest common divisors and least common multiples don’t neces-
sarily exist in an arbitrary integral domain, but they do in certain
types of domain (particularly Euclidean domains, unique factori-
sation domains, and principal ideal domains, which we will meet
soon).

9.2 Prime and irreducible elements

Now we want to generalise the notion of a prime number to an
arbitrary integral domain. There are two ways of defining prime
elements, that are equivalent for integers, but not necessarily in an
arbitrary domain.
One way is to say that a nonzero integer p ̸= ±1 is prime if and
only if whenever p = mn then either m or n is equal to ±1.

Definition 9.9 Let R be an integral domain, and suppose that
r ∈ R \ {0}. Then r is irreducible if:
(i) r is not a unit, and
(ii) if r = ab for some a, b ∈ R, then either a or b is a unit.

The other way is to say that a nonzero integer p ̸= ± is prime if and
only if whenever p divides mn then p divides either m or n.

Definition 9.10 Let R be an integral domain, and suppose that
r ∈ R \ {0}. Then r is prime if:
(i) r is not a unit, and
(ii) if r|ab for some a, b ∈ R, then r|a or r|b.

In the ring Z these are equivalent, but this is not necessarily true in
every integral domain. More precisely, in an integral domain, prime
elements are irreducible, but not all irreducible elements are prime.

Proposition 9.11 Let R be an integral domain, and suppose that r ∈ R
is prime. Then r is irreducible.
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Proof Let r ∈ R be prime. Then by Definition 9.10, r is not a unit.
Suppose that r = ab for some a, b ∈ R. Then r|r = ab and so we
have r|a or r|b. Without loss of generality, suppose that r|a. Now
a|r since r = ab, and so we have r ∼ a, so r = aq for some unit
q ∈ R. Then q = b by the cancellation laws3, so b is a unit and r3 Proposition 7.29, page 69.

is irreducible. (If, on the other hand, r|b then a similar argument
shows that a must be a unit.)

The converse doesn’t hold in general:

Example 9.12 Let R = Z[
√
−5] = {a + b

√
−5 : a, b ∈ Z}. Then

6 = 2×3 = (1+
√
−5)(1−

√
−5)

in R. We will show that 2 is irreducible but not prime.

First, we note that 2 does not divide 1±
√
−5, since if we set

2x = 1±
√
−5 then this implies that x = 1

2±
1
2

√
−5, which doesn’t

belong to R = Z[
√
−5]. Hence 2 is not prime.

We now show that 2 is irreducible. If 2 = ab with a = x+y
√
−5

and b = s+t
√
−5 then

4 = |ab|2 = |a|2|b|2 = (x2 + 5y2)(s2 + 5t2).

Since |a|2, |b|2 ∈ N, we have three cases to consider:
Case 1 If |a|2 = 1 then a−1 = x − y

√
−5 and so a is a unit.

Case 2 If |a|2 = 4 then |b|2 = 1 and b−1 = s − t
√
−5 so b is a

unit.
Case 3 If |a|2 = 2 then we have a contradiction: there are no
integers x and y with |a|2 = x2 + 5y2 = 2. So this case can’t
happen.
Hence 2 is irreducible. We can show by similar arguments that 3,
(1+

√
−5) and (1−

√
−5) are also irreducible in R.

9.3 Euclidean domains

In MA132 Foundations or MA138 Sets and Numbers you should have
met the following result:

Proposition 9.13 For any a, b ∈ Z with b ̸= 0, there exist q, r ∈ Z

such that a = qb + r with 0 ⩽ r < |b|.

The Euclidean Algorithm in Z provides a constructive proof of this
fact.
There is a similar result for polynomials over a field, using a poly-
nomial version of the Euclidean Algorithm.

Proposition 9.14 Let F be a field. For any polynomials f , g ∈ F[x]
with g ̸= 0, there exist polynomials q, r ∈ F[x] such that f = qg + r
and either r = 0 or deg(r) < deg(g).

Here, deg( f ) is the degree of a nonzero polynomial f . Specifically,
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for a nonzero polynomial

f = anxn + · · ·+ a1x + a0

with an ̸= 0, we define deg( f ) = n, with deg( f ) = 0 if f is a
nonzero constant.4 4 We will define deg(0) = −1, although

here we will only be concerned with
nonzero polynomials.Now we want to generalise this idea to arbitrary integral domains.

Definition 9.15 An integral domain R is a Euclidean domain if
it admits a norm function ν : R \ {0} → N∪{0} such that:
(i) ν(ab) ⩾ ν(b) for all a, b ∈ R \ {0}, and
(ii) for all a, b ∈ R with b ̸= 0 there exist q, r ∈ R such that

a = qb + r and either r = 0 or ν(r) < ν(b).

Propositions 9.13 and 9.14 give the following two examples:

Example 9.16 The ring Z is a Euclidean domain with norm
ν(a) = |a|.

Example 9.17 Let F be a field. Then F[x] is a Euclidean domain
with norm ν( f ) = deg( f ).

Another example concerns the Gaussian integers Z[i]:

Example 9.18 As in Example 7.13, we set Z[i] = {a + bi : a, b ∈
Z}, the ring of Gaussian integers. We know that Z[i] is a subring
of C, so it is certainly an integral domain.
Let z = x + yi, and set ν(z) = |z|2 = x2 + y2. We want to show
that this satisfies the requirements in Definition 9.15.
Firstly, condition (i) holds since |zw| = |z||w| for all z, w ∈ C.
To check condition (ii), let a, b ∈ Z[i] with b ̸= 0. Then a/b =
x + yi for some x, y ∈ Q. Choose x0, y0 ∈ Z with |x − x0| ⩽ 1

2 and
|y − y0| ⩽ 1

2 . Then

a = b(x + yi) = b(x0 + y0i) + b((x−x0) + (y−y0)i) = qb + r

where q = (x0 + y0i) ∈ Z[i] and r = b((x−x0) + (y−y0)i). Since
r = a − qb we have r ∈ Z[i] and

ν(r) = ν(b)ν((x−x0) + (y−y0)i) ⩽ ν(b)(1
4 +

1
4) < ν(b)

so condition (ii) holds, and hence Z[i] is a Euclidean domain.

9.4 Principal ideal domains

In Definition 8.15 we introduced the notion of a principal ideal: one
generated by a single element of the ring. Some integral domains
have no non-principal ideals:

Definition 9.19 An integral domain R is called a principal ideal
domain (or PID) if every ideal of R is principal.

Proposition 9.20 Every Euclidean domain is a PID.

Proof Let R be a Euclidean domain and suppose that ν is a norm
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for R. The trivial ideal (0) = {0} and the full ring R = (1) are both
principal.
Suppose that I is a proper, nontrivial ideal of R and choose b ∈
I \ {0} such that ν(b) is as small as possible. Then (b) ⊆ I.
Now let a ∈ I be some arbitrary element of I. Because R is a
Euclidean domain, we can find q, r ∈ R such that a = qb + r with
either r = 0 or ν(r) < ν(b). If r ̸= 0 then r = a − qb, which belongs
to I because a ∈ I, and qb ∈ I by the absorption condition. But this
is a contradiction because r ∈ I and ν(r) < ν(b), whereas we chose
b such that ν(b) was minimal over I. So r = 0 and a = qb, which
means that a ∈ (b). Hence I ⊆ (b), so I = (b) is principal and R is
therefore a PID.

This proposition together with Example 9.16 yields the following
corollary:

Corollary 9.21 The ring Z is a PID.

And Example 9.17 implies the following:

Corollary 9.22 If F is a field, then the polynomial ring F[x] is a PID.

Not every PID is a Euclidean domain, but it is fairly difficult to find
an example to demonstrate this. Probably the simplest example is
Z[α] = {a + bα : a, b ∈ Z} where α = 1

2(1 +
√
−19), but a proof of

this fact is a little beyond the scope of this module.

Proposition 9.23 If R is a PID then lcm(a, b) and gcd(a, b) exist for
any a, b ∈ R. Furthermore, there exist r, s ∈ R such that gcd(a, b) =
ra + sb.

Proof By Lemma 8.24, I = (a)+(b) = {ra + sb : r, s ∈ R} is an
ideal of R, and since R is a PID, this ideal I is principal. Hence
I = (d) for some d ∈ R.
Similarly, (a)∩(b) is an ideal, so it must be equal to (l) for some
l ∈ R.
We claim that d is a greatest common divisor and l is a least common
multiple of a and b. Indeed, (a) ⊆ (d) ⊇ (b), and whenever
(a) ⊆ (c) ⊇ (b) it follows that (c) ⊇ (a)+(b) = (d).
Similarly, (a) ⊇ (l) ⊆ (b), and whenever (a) ⊇ (m) ⊆ (b) it follows
that (m) ⊆ (a)∩(b) = (l).

Proposition 9.24 If R is a PID, then every irreducible element of R is
prime.

Proof Let r ∈ R be irreducible. Then by definition r is not a unit.
Suppose that r|ab for some a, b ∈ R. Then by Proposition 9.23, an
element c = gcd(a, b) exists.
Then r = ct for some t ∈ R. Since r is irreducible, either c or t is a
unit. We consider these cases separately.
Case 1 If t is a unit then r ∼ c and c|a, so r|a and hence r is prime.
Case 2 If c is a unit, then by Proposition 9.23 we have c = xa + yr
for some x, y ∈ R. Multiplying both sides of this by b gives cb =
xab + yrb. Now r|ab and clearly r|yrb, so r|cb. This means that
ru = cb for some u ∈ R. But if c is a unit, then we can multiply by
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c−1 to see that r|b, which implies again that r is prime.

9.5 Unique factorisation domains

The Fundamental Theorem of Arithmetic says that every nonzero
integer apart from ±1 can be factorised as a product of primes,
and that factorisation is unique up to the order of the factors and
multiplication by ±1. We want to generalise this.

Definition 9.25 An integral domain R is a factorisation domain
(FD) if each non-unit element a ∈ R \ {0} can be factorised as a
product of irreducible elements x = r1r2 . . . rn.

Definition 9.26 A factorisation domain R is a unique factorisa-
tion domain (UFD) if, for each non-unit element R \ {0} and any
two factorisations

x = r1r2 . . . rn = s1s2 . . . sm,

where r1, . . . , rn and s1, . . . , sm are irreducible, then m = n and
there exists σ ∈ Sn such that ri ∼ sσ(i) for 1 ⩽ i ⩽ n.

Proposition 9.27 Let R be a UFD. Then every irreducible element of
R is prime.

Proof Let x ∈ R be irreducible. Then by definition x is not a unit.
Now suppose that x|ab, and factorise a = r1 . . . rk and b = rk+1 . . . rn.
Thus we have a factorisation ab = r1 . . . rn. On the other hand
ab = xy for some y ∈ R. Factorise y = s1 . . . sm, and then we have
another factorisation ab = xs1 . . . sm. Since R is a UFD, x is associate
to ri for some i. If i ⩽ k then x|a, and if i > k then x|b. Hence x is
prime.

Proposition 9.28 Every PID is a FD.

Proof Let R be a PID, and suppose that x ∈ R \ {0} is not a unit.
Suppose that x can’t be factorised as a product of irreducible ele-
ments. Then

X = {x ∈ R \ {0} : x is not a unit and can’t be factorised}

is nonempty.
Let x ∈ X. Then x can’t be irreducible, so we can write x = yz for
some y, z ∈ R, neither of which are units. If we could factorise both
y and z into irreducibles, then we could do the same for x. So at
least one of them, say y, can’t be factorised, and hence y ∈ X. Since
z is not a unit, x ̸ |y. By Lemma 9.2, (x) ⊂ (y).
Since this is true for all x ∈ X, we can obtain an infinite sequence of
elements xi ∈ X such that

(x1) ⊂ (x2) ⊂ · · · ⊂ (xn) ⊂ (xn+1) ⊂ · · ·

where all the inclusions are proper.
Let I =

⋃∞
i=1(xi). Then I is an ideal. To see this, let r, s ∈ I. Then

for some m, n ⩾ 0 we have r ∈ (xm) and s ∈ (xn), and assuming
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without loss of generality that n ⩾ m, we have r, s ∈ (xn), so
r+s ∈ (xn) ⊆ I. The other conditions can be checked similarly.
Since R is a PID, I = (d) for some d ∈ R. Then d ∈ (xn) for
some n. This implies that I = (d) ⊆ (xn). But this contradicts the
assumption that (xn) is properly contained in (xn+1) ⊂ I.
Hence our initial assumption, that x can’t be factorised into irre-
ducible elements, was false. Therefore every nonzero, non-unit
element of R can be factorised as a product of finitely many irre-
ducible elements, and so R is a factorisation domain.

Proposition 9.29 Let R be a factorisation domain in which every
irreducible element is prime. Ten R is a UFD.

Corollary 9.30 Every PID is a UFD.

Example 9.31 The ring Z[
√
−5] is a factorisation domain but not

a UFD.

Example 9.32 The ring Z[x] is a UFD but not a PID.

Proposition 9.33 Let R be a UFD. Then for any a, b ∈ R, there exist
elements d = gcd(a, b) and l = lcm(a, b).


	Introduction
	Groups
	Definitions and elementary properties
	Structural equivalence
	Cyclic groups
	Symmetry groups
	Permutation groups

	Subgroups
	Definitions, examples and elementary properties
	Cosets and Lagrange's Theorem

	Normal Subgroups and Quotients
	Normal subgroups
	Quotient groups
	Direct products

	Homomorphisms
	Structure-preserving maps
	Kernels and images
	The Isomorphism Theorems

	Classification of Groups
	Generators and relations
	Small finite groups
	Finitely-generated abelian groups

	Group Actions
	Groups acting on sets
	Orbits and stabilisers
	Conjugacy classes
	Simple groups

	Rings and Subrings
	Rings
	Subrings
	Isomorphisms and direct products
	Integral domains and fields

	Ideals and Quotients
	Homomorphisms
	Ideals
	Quotient rings
	The Isomorphism Theorems

	Domains
	Divisibility
	Prime and irreducible elements
	Euclidean domains
	Principal ideal domains
	Unique factorisation domains


