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1 Preface

These are lecture notes for a course given at the University of Warwick in the Winter/Spring Term
2024.

In preparation of these notes, I have freely used and copied from the excellent lecture notes from
the previous course given by Mario J. Micallef, as well as the textbook by Spivak [1]. Especially, I
do not claim in any way originality.

I’d be grateful for letting me know of any mistakes or typos one might find in these notes.

Coventry, December 2024
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2 Functions on Euclidean Space

2.1 Norm and inner product

We consider Euclidean n-space Rn as the space of all real n-tuples (x1, . . . , xn) with the standard
addition and scalar multiplication, which makes this into a vector space. For x ∈ Rn we consider
the norm ∥x∥ := (x21 + . . . + x2n)

1/2 and for x, y ∈ Rn the inner product ⟨x, y⟩ =
∑n

i=1 xiyi. Note
that ∥x∥ = ⟨x, x⟩1/2. We recall the following basic properties of the norm.

Proposition 2.1.1. For x, y ∈ Rn and a ∈ R it holds

(1) ∥x∥ ≥ 0, and ∥x∥ = 0 if and only if x = 0.

(2) |⟨x, y⟩| ≤ ∥x∥ · ∥y∥; equality holds if and only x and y are linearly dependent.

(3) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
(4) ∥ax∥ = |a| · ∥x∥.

The proof is left as an exercise. Note that the properties (1) and (3) together make (Rn, ∥x−y∥) into
a metric space. We summarize the properties of the scalar product in the following proposition.

Proposition 2.1.2. For x, x1, x2, y, y1, y2 ∈ Rn and a ∈ R it holds

(1) ⟨x, y⟩ = ⟨y, x⟩ (symmetry).

(2) ⟨ax, y⟩ = ⟨x, ay⟩ = a⟨x, y⟩
⟨x1 + x2, y⟩ = ⟨x1, y⟩+ ⟨x2, y⟩
⟨x, y1 + y2⟩ = ⟨x, y1⟩+ ⟨x, y2⟩ (bilinearity).

(3) ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 if and only if x = 0 (positive definiteness).

(4) ⟨x, y⟩ = 1
4

(
∥x+ y∥2 − ∥x− y∥2

)
(polarization identity).

Again the proof is left as an exercise.

We will denote the zero element in Rn by 0 = (0, . . . , 0) and denote the standard basis by e1, . . . , en.
Thus and point x = (x1, . . . , xn) ∈ Rn can be written as x =

∑n
i=1 xiei.

5



2.2. THE SPACE OF LINEAR MAPS AND MATRICES 6

2.2 The space of linear maps and matrices

Recall that a map T : Rn → Rm is linear, provided that for all x, y ∈ Rn and a ∈ R it holds

T (x+ y) = T (x) + T (y) ,

T (ax) = aT (x) .

We denote the space of such linear maps by L(Rn,Rm) (if n = m we also write L(Rn)). Note that
L(Rn,Rm) is itself again a (real) vectorspace.

For ei a standard basis vector of Rn, i ∈ {1, . . . , n}, we can consider the coefficients aij , uniquely
determined by

T (ei) =

m∑
j=1

ajiêj

where ê1, . . . , êm is the standard basis of Rm. We assign the Matrix A = (aij) ∈ Rm,n to T , and
denote the map T 7→ A by µ : L(Rn,Rm) → Rm,n. This yields that for x = (x1, . . . , xn) ∈ Rn with
T (x) = y ∈ Rm we have

T (x) = T
( n∑

i=1

xiei

)
=

n∑
i=1

xiT (ei) =
n∑

i=1

m∑
j=1

ajixiêj =
m∑
j=1

yj êj .

Thus we have with the convention how to multiply matrices that y1
...
ym

 =

a11 · · · a1n
...

. . .
...

am1 · · · amn

 ·

x1...
xn

 .

Remark 2.2.1: Note that with respect to different bases {b1, · · · , bn} of Rn and {b̂1, · · · , b̂m} of Rm

the same linear map T would have a (possibly) different matrix representation. It will be important
in this course that the clearly distinguish between an (abstract) linear map T : Rn → Rm and its
representation as a matrix.

Given another linear map S : Rm → Rp with matrix representation µ(S) = B ∈ Rp,m the above
discussion implies that the matrix representation of the linear map S ◦ T : Rn → Rp is given by
BA, i.e. µ(S ◦ T ) = µ(S)µ(T ) = BA.

We also recall that a norm on L(Rn,Rm) is given by the operator norm

∥T∥op = sup
x∈Rn\{0}

∥T (x)∥
∥x∥

= sup
∥x∥=1

∥T (x)∥ .



2.3. SUBSETS OF EUCLIDEAN SPACE 7

Using the matrix representation µ(T ) = A ∈ Rm,n another norm is given by the Frobenius norm

∥A∥F :=
( m∑

i=1

n∑
j=1

a2ij

)1/2
.

Note that under the standard identification of Rm,n with Rmn this is just the standard norm on
Rnm. We have the following estimates (see Analysis III)

(2.1)
1√
n
∥µ(T )∥F ≤ ∥T∥op ≤ ∥µ(T )∥F ,

i.e. both norms are equivalent. Recall that any two norms one a finite dimensional vectorspace are
equivalent, but this gives an explicit estimate.

2.3 Subsets of Euclidean Space

We recall the following basic notions.

• The open ball, centred at x ∈ Rn with radius r > 0 is given by

B(x, r) = Br(x) = {y ∈ Rn | ∥y − x∥ < r} .

• A set U ⊂ Rn is called open if for all x ∈ U there exists r > 0 s.t. B(x, r) ⊂ U .

• A set A ⊂ Rn is called closed if its complement Ac := Rn \A is open.

• A set A ⊂ Rn is called bounded if there exists x ∈ Rn and R > 0 such that A ⊂ B(x,R).

• A set K ⊂ Rn is called compact if it satisfies the following:

Let {Uα}α∈A be a family of open sets in Rn (indexed by a set A), such that K ⊂ ∪α∈AUα.
Then there exists N ∈ N and α1, . . . , αN ∈ A such that K ⊂ ∪N

i=1Uαi.

We recall the following equivalences.

Proposition 2.3.1. Let K ⊂ Rn. The following are equivalent

(i) K is compact.

(ii) K is closed and bounded.

(iii) Every sequence (xi)i∈N in K, i.e. xi ∈ K for all i ∈ N, contains a convergent subsequence
with limit in K.

Proof. See Analysis III and Norms, Metrics and Topologies.
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2.4 Functions and continuity

For A ⊂ Rn we consider f : A→ Rm. If m = 1 we call this a scalar function and if m > 1 a vector
valued function. In case m = n one also calls this a vector field.

For x ∈ A we can write
f(x) = (f1(x), . . . , fm(x))

with fi : A → R the component functions for i = 1, . . . ,m. Considering πi : Rm → R, i = 1, . . .m,
the projection to the i-th coordinate (note that this is a linear function), we can write

fi = πi ◦ f .

We call
graph(f) := {(x, f(x)) |x ∈ A} ⊂ Rn × Rm

the graph of f . Note that graph(f) uniquely determines f .

Definition 2.4.1 (Continuity). For a ∈ A and b ∈ Rm we say

lim
x→a

f(x) = b

provided for all ε > 0 there exists δ > 0 such that if x ∈ A and ∥x − a∥ < δ then ∥f(x) − b∥ < ε.
If limx→a f(x) = f(a), then we say that f is continuous at a. We say that f is continuous if it is
countinous at each a ∈ A.

As in Analysis I, it is easy to see that continuity of f at a ∈ A is equivalent to the statement
that for any sequence (xi)i∈N in A with xi → a it holds that f(xi) → f(a). But there is a further
important characterisation of continuity (see Analysis III):

Theorem 2.4.2. Let A ⊂ Rn and f : A→ Rm. Then f is continuous if and only if for every open
set U ⊂ Rm there exists an open set V ⊂ Rn such that f−1(U) = V ∩A.

Important is also the interaction between continuous functions and compact sets (see Analysis
III):

Theorem 2.4.3. Let A ⊂ Rn and f : A→ Rm continuous. If K ⊂ A is compact, then f(K) ⊂ Rm

is compact.

Note that an immediate consequence of this result is that a continuous, scalar function attains its
maximum and minimum on any compact set. We also recall that the composition of continuous
functions is again continuous.

Theorem 2.4.4. Let A ⊂ Rn, B ⊂ Rm and f : A → Rm, g : B → Rl be such that f(A) ⊂ B. Let
a ∈ A and assume that f is continuous at a and g continuous at f(a). Then g ◦ f : A → Rl is
continuous at a.
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Proof. This follows directly from the definition (exercise).

Remark 2.4.5: (1) Linear maps are continuous (exercise).

(2) Let A ⊂ Rn and f : A→ Rm. Then f is continuous at a ∈ A if and only if for all i = 1, . . . ,m
the component functions fi : A→ R are continuous at a (exercise).

(3) All polynomials in n variables are continuous (exercise).

(4) Let A ⊂ Rn and f, g : A → R be continuous. Then the quotient x 7→ f(x)
g(x) is continuous on

A \ {x ∈ A | g(x) = 0} (exercise).

(5) But things are not so simple. Consider

f : R2 \ {(0, 0)} → R, (x, y) 7→ x2 − y2

x2 + y2
.

Then lim(x,y)→(0,0) f(x, y) does not exist, but for every z ∈ R2, z ̸= 0 the limit limr↘0 f(rz1, rz2)
exists. See exercises.

2.4.1 The space GL(n,R) ⊂ L(Rn) of invertible linear transformations

Recall that if a linear map T : Rn → Rm is a bijection, then n = m and kerT = {0}. Note that the
rank-nullity theorem implies that the converse is also true: a linear map T : Rn → Rm is bijection
(and thus its inverse is linear) if m = n and kerT = {0}. We can rephrase this as follows. For
A = µ(T ) the system Ax = y of n linear equations in n variables is guaranteed a solution for all
y ∈ Rn if and only if, should the solution exist, then it is unique, i.e. uniqueness of the solution
(that is not yet known to exist!) in this setting guarantees its existence!

Definition 2.4.6. The general linear group over the real numbers is given by

GL(n,R) := {T ∈ L(Rn) |T is invertible },

with the group operation being composition of linear maps.

In terms of matrices,
GL(n,R) := {(aij) ∈ Rn,n | det(aij) ̸= 0} .

This is the space of nonsingular matrices with matrix multiplication as the group operation. It is
easy to check that GL(n,R) satisfies the group axioms and that it is infinite. Note that GL(1,R)
is just the set of nonzero real numbers with multiplications. We denote with ∆ : Rn,n → R
the determinant function. Note that the determinant is just a polynomial of degree n on the n2

components of an n× n-matrix, and is thus continuous.

Proposition 2.4.7. The space GL(n,R) is an open subset of Rn,n.

Proof. We first note that GL(n,R) = ∆−1(R \ {0}). Since R \ {0} is open, and the determinant
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function is continuous, Theorem 2.4.2 yields the statement.

The openness of GL(n,R) means that invertibility of a linear transformation in L(Rn) is a stable
property. In other words, an invertible linear transformation can be perturbed a little and it remains
invertible. But even more is true.

Proposition 2.4.8. The map A 7→ A−1 : GL(n,R) → GL(n,R) is continuous.

Proof. We recall from Linear Algebra (more precisely the Leibnitz rule for the determinant) the
definition of the adjoint matrix A#, whose entries are polynomials (of degree n−1) in the coefficients
of A. Thus A 7→ A# : L(Rn) → L(Rn) is continuous. On GL(n,R) = ∆−1(R \ {0}) we furthermore
can write

A−1 =
1

det(aij)
A#

and thus A 7→ A−1 : GL(n,R) → GL(n,R) is continuous.

2.4.2 Lipschitz continuity

Definition 2.4.9 (Lipschitz continuity). Let U ⊂ Rn. We say that f : U → Rk is Lipschitz
continuous on U if ∃ M > 0 such that

(2.2) ∥f(x)− f(y)∥ ⩽M∥x− y∥ ∀x, y ∈ U.

The Lipschitz constant M∗ of f is then defined by

M∗ := sup
x,y∈U, x̸=y

∥f(x)− f(y)∥
∥x− y∥

.

Observe that Lipschitz continuity on U implies uniform continuity on U :

∀ ε > 0, if ∥x− y∥ < ε/M ⇒ ∥f(x)− f(y)∥ < ε.

Examples of Lipschitz continuous functions

A linear map T : Rn → Rm is Lipschitz continuous because, by linearity, T (x)− T (y) = T (x− y)
and therefore,

∥T (x)− T (y)∥ = ∥T (x− y)∥ ≤ ∥T∥op∥x− y∥ ,

i.e. the Lipschitz constant of T is equal to ∥T∥op.
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By the triangle inequality, the map x 7→ |x| : Rn → R≥0 is Lipschitz continuous with Lipschitz
constant 1: ∣∣|x| − |y|

∣∣ ≤ |x− y|.

Similarly, the operator norm, viewed as a function ∥·∥op : L(Rn,Rm) → R is Lipschitz continuous:∣∣∥A∥op − ∥B∥op
∣∣ ≤ ∥A−B∥op.

The same applies to ∥ · ∥F .



3 Differentiation

Motivation. Recall that f : (b, c) → R is differentiable at a ∈ (b, c) if there exists λ ∈ R s.t.

(3.1) lim
h→0
h̸=0

f(a+ h)− f(a)

h
= λ ,

and one denotes f ′(a) := λ. Define the linear function

La : R → R, x 7→ λx

and let

(3.2) R(a, h) := f(a+ h)− f(a)− La(h) ⇐⇒ f(a+ h) = f(a) + La(h) +R(a, h) .

We note that (3.1) is equivalent to

lim
h→0
h̸=0

∣∣∣∣R(a, h)h

∣∣∣∣ = 0 ,

i.e. R(a, h) vanishes to higher than linear order and we can see (3.2) as stating that

f(a) + La(h) is the best affine approximation to f(a+ h) around h = 0 .

So we can restate (3.1) as:

f is differentiable at a ∈ (b, c) if there exists a linear map La : R → R such that

f(a+ h) = f(a) + La(h) +R(a, h)

and

lim
h→0
h̸=0

∣∣∣∣R(a, h)h

∣∣∣∣ = 0 .

This alternative definition directly extends to higher dimensions.

3.1 The differential

Definition 3.1.1 (Differentiability). Let U ⊂ Rn be open and f : U → Rm. We say f is differen-
tiable at a ∈ U if there exists a linear map La : Rn → Rm such that for all h ∈ Rn with a+ h ∈ U

12
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it holds

(3.3) f(a+ h) = f(a) + La(h) +R(a, h)

where

(3.4) lim
h→0
h̸=0

∥R(a, h)∥
∥h∥

= 0 .

We call La the derivative of f at a, denoted by Df(a) ∈ L(Rn,Rm).

The next lemma shows that if the derivative exists, then it is unique.

Lemma 3.1.2. Let U ⊂ Rn be open and f : U → Rm. Assume f is differentiable at a ∈ U . Then
the derivative Df(a) : Rn → Rm is unique.

Proof. Assume we have for i = 1, 2

f(a+ h) = f(a) + Li(h) +Ri(a, h)

with

lim
h→0
h̸=0

∥Ri(a, h)∥
∥h∥

= 0 .

Note that
L1(h)− L2(h) = R2(a, h)−R1(a, h) ,

and thus

lim
h→0
h̸=0

∥L1(h)− L2(h)∥
∥h∥

= lim
h→0
h̸=0

∥R2(a, h)−R1(a, h)∥
∥h∥

≤ lim
h→0
h̸=0

∥R2(a, h)∥
∥h∥

+ lim
h→0
h̸=0

∥R1(a, h)∥
∥h∥

= 0 .

Note that for any x ∈ Rn \ {0} and t↘ 0 we have tx→ 0 as t↘ 0. Thus

0 = lim
t→0

∥L1(tx)− L2(tx)∥
∥tx∥

=
∥L1(x)− L2(x)∥

∥x∥
,

which yields L1(x) = L2(x). Since this holds for any x ∈ Rn \ {0} we have L1 = L2.

Definition 3.1.3 (Jacobian matrix). Let U ⊂ Rn be open and f : U → Rm be differentiable at
a ∈ U . The matrix corresponding to Df(a) ∈ L(Rn,Rm) (with respect to the standard bases of Rn

and Rm) is called the Jacobian matrix of f at a, denoted with

∂f(a) := µ(Df(a)) .

Example 3.1.4: Let f : R2 → R, (x, y) 7→ sin(x). We claim that Df(a, b)(x, y) = cos(a)x =:
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λ(x, y). Note that this is a linear map. We have

lim
(h,k)→0
(h,k)̸=0

∥f(a+ h, b+ k)− f(a, b)− λ(x, y)∥
∥(h, k)∥

= lim
(h,k)→0
(h,k)̸=0

| sin(a+ h)− sin a− cos(a)h|
∥(h, k)∥

.

Since sin′(a) = cos(a) we have

lim
h→0
h̸=0

| sin(a+ h)− sin(a)− cos(a)h|
|h|

= 0 .

Since ∥(h, k)∥ ≥ |h| this implies

lim
(h,k)→0
(h,k)̸=0

| sin(a+ h)− sin(a)− cos(a)h|
∥(h, k)∥

= 0 ,

and thus λ is the derivative of f at (a, b). Note that this yields that

∂f(a, b) = µ(λ) = (cos(a), 0) .

As in the 1-d case, differentiability implies continuity.

Theorem 3.1.5 (Differentiability implies continuity). Let U ⊂ Rn be open and f : U → Rm be
differentiable at a ∈ U . Then f is continuous at a.

Proof. See example sheet 1.

Assume that U ⊂ Rn, V ⊂ Rm are open and f : U → Rm, g : V → Rl be such that f(U) ⊂ V .
Assume that f is differentiable at a ∈ U with differentialDf(a) and g differentiable at b := f(a) ∈ V
with differential Dg(b). Recall that f(a) +Df(a)(h) is the best affine approximation to f at f(a)
and g(b)+Dg(b)(h) is the the best affine approximation to g at g(a). So looking at g◦f a reasonable
guess is that the best affine approximation of g ◦ f at a is g(f(a)) + (Dg ◦Df)(a)(h). This is the
content of the chain rule.

Theorem 3.1.6 (Chain rule). Let U ⊂ Rn, V ⊂ Rm be open and f : U → Rm, g : V → Rl be such
that f(U) ⊂ V . Assume that f is differentiable at a ∈ U and g differentiable at f(a) ∈ V . Then
g ◦ f : U → Rl is differentiable at a and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a) .

This yields ∂(g ◦ f)(a) = ∂g(f(a))∂f(a).
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Proof. Since f is differentiable at a we have ∀h ∈ Rn such that a+ h ∈ U

(3.5) f(a+ h) = f(a) +Df(a)(h) +R1(a, h)

with

(3.6) lim
h→0
h̸=0

∥R1(a, h)∥
∥h∥

= 0 .

Similarly, since g is differentiable at b := f(a) we have ∀k ∈ Rm such that b+ k ∈ V

(3.7) g(b+ k) = g(b) +Dg(b)(k) +R2(b, k)

with

(3.8) lim
k→0
k ̸=0

∥R2(b, k)∥
∥k∥

= 0 .

To compute the differential of g ◦ f at a we note that (3.5) implies that

b+ k = f(a) + k = f(a) +Df(a)(h) +R1(a, h)

and thus k = Df(a)(h) +R1(a, h). So combining (3.5) with (3.7) we get

(g ◦ f)(a+ h) = g(f(a)) +Dg(b)
(
Df(a)(h) +R1(a, h)

)
+R2

(
b,Df(a)(h) +R1(a, h)

)
= g(f(a)) +

(
Dg(f(a)) ◦Df(a)

)
(h) +Dg(b)

(
R1(a, h)

)
+R2

(
b,Df(a)(h) +R1(a, h)

)
.

To prove the statement we thus need to show that

lim
h→0
h̸=0

∥Dg(b)
(
R1(a, h)

)
+R2

(
b,Df(a)(h) +R1(a, h)

)
∥

∥h∥
= 0 .

We can estimate

lim
h→0
h̸=0

∥Dg(b)
(
R1(a, h)

)
∥

∥h∥
≤ ∥Dg(b)∥op lim

h→0
h̸=0

∥R1(a, h)∥
∥h∥

= 0 ,

and it thus suffices to show that

lim
h→0
h̸=0

∥R2

(
b,Df(a)(h) +R1(a, h)

)
∥

∥h∥
= 0 .

To show this, choose any sequence hi → 0, hi ̸= 0 and let ki := Df(a)(hi) + R1(a, hi). Note that
ki → 0, and if ki = 0 (since hi ̸= 0) we trivially have

∥R2

(
b, ki

)
∥

∥hi∥
= 0
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and it is thus sufficient to assume that ki ̸= 0 for all i. But then we can write

lim
i→∞

∥R2

(
b, ki

)
∥

∥hi∥
= lim

i→∞

∥R2

(
b, ki)∥

∥ki∥
∥Df(a)(hi) +R1(a, hi)∥

∥hi∥
(3.9)

Note that by (3.6) we have

∥Df(a)(hi) +R1(a, hi)∥
∥hi∥

≤ ∥Df(a)(hi)∥
∥hi∥

+
∥R1(a, hi)∥

∥hi∥
≤ ∥Df(a)∥op + 1

for i sufficiently large. Combining this with (3.9) we have

lim
i→∞

∥R2

(
b, ki

)
∥

∥hi∥
≤ (∥Df(a)∥op + 1) lim

i→∞

∥R2

(
b, ki)∥

∥ki∥
= 0 .

This yields the desired statement.

That ∂(g ◦ f)(a) = ∂g(f(a))∂f(a) follows from µ(Dg(f(a)) ◦Df(a)) = µ(Dg(f(a)))µ(Df(a)).

We now compute the derivative of some basic functions.

Proposition 3.1.7. (1) Let U ⊂ Rn be open and f : U → Rm be a constant function (i.e. ∃ y ∈
Rm s.t. f(x) = y ∀x ∈ U). Then for all a ∈ U we have Df(a) = 0.

(2) If f : Rn → Rm is linear, then for all a ∈ Rn we have Df(a) = f .

(3) If s : R2 → R is given by s(x, y) = x+ y, then Ds(a, b) = s.

(4) If p : R2 → R is given by p(x, y) = xy, then Dp(a, b)(x, y) = bx+ay and thus ∂p(a, b) = (b, a).

Proof. (1): We clearly have f(a+ h) = f(a) and thus Df(a) = 0 and R(a, h) ≡ 0.

(2): We have f(a+ h) = f(a) + f(h) and thus Df(a) = f and R(a, h) ≡ 0.

(3): This follows from (2), since s is linear.

(4): Let λ(x, y) = bx+ ay. Then

lim
(h,k)→0
(h,k)̸=0

∥p(a+ h, b+ k)− p(a, b)− λ(h, k)∥
∥(h, k)∥

= lim
(h,k)→0
(h,k)̸=0

|hk|
∥(h, k)∥

≤ lim
(h,k)→0
(h,k)̸=0

1
2h

2 + 1
2k

2

√
h2 + k2

≤ lim
(h,k)→0
(h,k)̸=0

√
h2 + k2

2
= 0 .

This yields the statement.

The following proposition relates the differentiability of a function to the differentiability of its
component functions.
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Proposition 3.1.8. Let U ⊂ Rn be open and f : U → Rm. Then f is differentiable at a ∈ U if
and only if each if its component functions fi, i = 1, . . . ,m, is differentiable at a. Moreover,

(3.10) Df(a)(h) =
(
Df1(a)(h), . . . , Dfm(a)(h)

)
.

Thus ∂f(a) is the m× n matrix whose i-th row is ∂fi(a).

Proof. “⇒”: Assume f is differentiable at a ∈ U . Let πi : Rm → R be the projection on the i-th
coordinate. Note that πi is linear, so it is differentiable and agrees with its differential at every
point (Proposition 3.1.7 (2)). Thus by the chain rule fi = πi ◦ f is differentiable and

Dfi(a) = Dπi(f(a)) ◦Df(a) = πi ◦Df(a) .

This is (3.10).

“⇐”: Assume each fi is differentiable at a with

(3.11) fi(a+ h) = fi(a) +Dfi(a)(h) +Ri(a, h)

and

(3.12) lim
h→0
h̸=0

|Ri(a, h)|
∥h∥

= 0 .

Define
L(h) :=

(
Df1(a)(h), . . . , Dfm(a)(h)

)
: Rn → Rm .

Note that L is linear. We similarly define for h ∈ Rm such that a+ h ∈ U

R(a, h) :=
(
R1(a, h), . . . , Rm(a, h)

)
.

Then we can write (3.11) as

f(a+ h) = f(a) + L(h) +R(a, h) .

The estimate (3.12) implies that

lim
h→0
h̸=0

∥R(a, h)∥
∥h∥

= 0 ,

which yields that f is differentiable at a and Df(a) = L. (3.10) directly yields that ∂f(a) is the
m× n matrix whose i-th row is ∂fi(a).

Corollary 3.1.9. Let U ⊂ Rn be open and f, g : U → R be differentiable at a ∈ U . Then

(1) D(f + g)(a) = Df(a) +Dg(a).

(2) D(fg)(a) = g(a)Df(a) + f(a)Dg(a).
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(3) Provided g(a) ̸= 0, then

D

(
f

g

)
(a) =

g(a)Df(a)− f(a)Dg(a)

(g(a))2
.

Proof. We use the notation of Proposition 3.1.7.

(1): We have f + g = s ◦ (f, g) and so by Proposition 3.1.7 and Proposition 3.1.8

D(f + g)(a) = Ds(f(a), g(a)) ◦D(f, g)(a) = s ◦ (Df(a), Dg(a)) = Df(a) +Dg(a) .

(2): We have fg = p ◦ (f, g) and so by Proposition 3.1.7 and Proposition 3.1.8

D(fg)(a) = Dp(f(a), g(a))◦D(f, g)(a) = Dp(f(a), g(a))◦(Df(a), Dg(a)) = g(a)Df(a)+f(a)Dg(a) .

(3): This follows from (2) since D
(
1
g

)
= − 1

g2
Dg.

3.2 Partial derivatives

Definition 3.2.1 (Partial derivative). Let U ⊂ Rn be open, f : U → R and a ∈ U . For i ∈
{1, . . . , n} we define the i-th partial derivative of f at a as

∂if(a) := lim
h→0
h̸=0

f(a1, . . . , ai + h, . . . , an)− f(a)

h
,

provided the limit exists.

Remark 3.2.2: (1) Thus ∂if(a) is the derivative of the function

g(t) := f(a1, . . . , ai−1, t, ai+1, . . . , an)

at t = ai, i.e. ∂if(a) = g′(ai). This yields the interpretation that ∂if(a) is the slope of the tangent
line at (a, f(a)) to the curve obtained by intersection graph(f) with the plane {xj = aj | j ̸= i}. So
we know how to compute this: treat xj for j ̸= i as constants and differentiate w.r.t. xi.

(2) The partial derivative is also sometimes denoted by ∂f
∂xi

(a).

Definition 3.2.3 (Directional derivative). Let U ⊂ Rn be open, f : U → R and a ∈ U . For v ∈ Rn

we define the directional derivative of f at a in direction v to be

∂vf(a) = lim
t→0
t̸=0

f(a+ tv)− f(a)

t
,
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provided the limit exists.

Remark 3.2.4: (1) Choosing v = ei we see that ∂eif(a) = ∂if(a).

(2) Note that for λ ̸= 0 we have

∂λvf(a) = lim
t→0
t̸=0

f(a+ tλv)− f(a)

t
= λ lim

t→0
t̸=0

f(a+ tλv)− f(a)

λt

= λ lim
s→0
s ̸=0

f(a+ sv)− f(a)

s
= λ∂vf(a) .

(3) Assume f is differentiable at a. Note that for I ⊂ R an open interval, a function g : I → R
which is differentiable at t ∈ I, we have g′(t) = Dg(t)(1). Consider b : R → Rn, t 7→ a + tv. Then
we can take g := f ◦ b : I → R, where a ∈ I. So we have

∂vf(a) = g′(0) = (f ◦ b)′(0) = D(f ◦ b)(0)(1) = Df(a)(Db(0)(1)) = Df(a)(v) .

Note that this directly implies that for v, w ∈ Rn

∂v+wf(a) = Df(a)(v + w) = Df(a)(v) +Df(a)(w) = ∂uf(a) + ∂vf(a) .

(4) We will see in the exercises that having all directional derivatives existing at a point (which
includes the partial derivatives) does not imply differentiability, not even continuity.

3.3 Relating the derivative and partial derivatives

We can now relate the partial derivatives with the Jacobi matrix.

Theorem 3.3.1 (Partial derivatives and the Jacobi matrix). Let U ⊂ Rn be open, f : U → Rm

be differentiable at a ∈ U . Then ∂jfi exists for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. The Jacobi
matrix ∂f(a) is the m× n matrix (∂jfi(a))ij, i.e.

∂f(a) =

∂1f1(a) · · · ∂nf1(a)
...

. . .
...

∂1fm(a) · · · ∂nfm(a)



Proof. Assume first thatm = 1, i.e. f : U → R. Then h : R → Rn, x 7→ (a1, . . . , aj−1, x, aj+1, . . . , an)
is differentiable at aj and

∂jf(a) = ∂(f ◦ h)(aj) .

Thus by the chain rule
∂(f ◦ h)(aj) = ∂f(a)∂h(aj) = ∂f(a)ej .

This implies that ∂jf(a) exists and is the j-th entry of the 1× n matrix ∂f(a).
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The theorem follows for general m ≥ 1 since by Proposition 3.1.8 each fi is differentiable in a and
the i-th row of ∂f(a) is ∂fi(a).

Using the chain rule and that the composition of linear maps corresponds to matrix multiplication
of the corresponding matrix representation yields the following corollary.

Corollary 3.3.2. Let U ⊂ Rn, V ⊂ Rm be open and f : U → Rm, g : V → Rl be such that
f(U) ⊂ V . Assume that f is differentiable at a ∈ U and g differentiable at f(a) ∈ V . Then
∂(g ◦ f)(a) = ∂g(f(a))∂f(a), i.e. for i ∈ {1, . . . , l} and j ∈ {1, . . . , n}

(∂(g ◦ f)(a))ij =
m∑
k=1

∂kgi(f(a))∂jfk(a) .

Remark 3.3.3: For the case that l = 1, i.e. g : V → R we see that h = g ◦ f satisfies for
j ∈ {1, . . . , n}

∂jh(a) =

m∑
k=1

∂kg(f(a))∂jfk(a) .

We have seen in the exercises that all directional derivatives existing at a point (which includes
the partial derivatives), does not imply differentiability, not even continuity. So it is clear that one
needs a stronger condition to deduce differentiability from the existence of partial derivatives.

Theorem 3.3.4 (Local continuity of partial derivatives implies differentiability). Let U ⊂ Rn be
open, f : U → Rm and consider a ∈ U . Assume that all partial derivatives ∂jfi (i ∈ {1, . . . ,m}
and j ∈ {1, . . . , n}) exist and are continuous in an open neighborhood V ⊂ U of a. Then f is
differentiable at a.

Proof. Due to Proposition 3.1.8, as in the proof of Theorem 3.3.1, it is sufficient to consider the
case m = 1. Since V is open, there is ε > 0 such that a+ h ∈ V for all h such that maxi |hi| < ε.
We can then write

f(a+ h)− f(a) = f(a1 + h1, a2 + h2, . . . , an + hn)− f(a1, a2, . . . , an)

= f(a1 + h1, a2 + h2, . . . , an + hn)− f(a1, a2 + h2, . . . , an + hn)

+ f(a1, a2 + h2, . . . , an + hn)− f(a1, a2, . . . , an)

= f(a1 + h1, a2 + h2, . . . , an + hn)− f(a1, a2 + h2, . . . , an + hn)

+ f(a1, a2 + h2, . . . , an + hn)− f(a1, a2, a3 + h3, . . . , an + hn)

...

+ f(a1, . . . , an−1, an + hn)− f(a1, . . . , an−1, an) .

(3.13)

Recall that ∂1f(x, a2 + h2, . . . , an + hn) is the derivative of the function x 7→ g(x) = f(x, a2 +
h2, . . . , an + hn). By assumption g is continuously differentiable on (a1 − ε, a1 + ε). Thus by the
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mean value theorem applied to g we obtain

f(a1 + h1, a2 + h2, . . . , an + hn)− f(a1, a2 + h2, . . . , an + hn) = h1∂1f(θ1, a2 + h2, . . . , an + hn)

for some θ1 between a1 and a1+h1. Similarly the i-th term in the sum on the RHS of (3.13) equals

hi∂if(a1, . . . , ai−1, θi, ai+1 + hi+1, . . . , an + hn) = hi∂if(ci)

for some θi between ai and ai+hi and we set ci := (a1, . . . , ai−1, θi, ai+1+hi+1, . . . , an+hn). Note
that ci → a as h→ 0. We can then use the sum (3.13) with the above identification to estimate∣∣f(a+ h)− f(a)−

∑n
i=1 ∂if(a)hi

∣∣
∥h∥

=

∣∣∑n
i=1(∂if(ci)− ∂if(a))hi

∣∣
∥h∥

≤ 1

∥h∥

n∑
i=1

|∂if(ci)− ∂if(a)||hi|

≤
n∑

i=1

|∂if(ci)− ∂if(a)|

(3.14)

Note that the final term tends to zero as h → 0 since ci → a and the partial derivatives of f are
continuous on V . We can thus define the linear map (as we would expect)

Df(a)(h) :=
n∑

i=1

∂if(a)hi

and (3.14) can be rewritten as

f(a+ h) = f(a) +Df(a)(h) +R(a, h)

with

lim
h→0
h̸=0

|R(a, h)|
∥h∥

= 0 .

This shows that f is differentiable at a.

3.3.1 The space of continuously differentiable functions

Definition 3.3.5 (Continuous differentiability). Let U ⊂ Rn be open and f : U → Rm be differ-
entiable on U . Then f is called continuously differentiable at a ∈ U if the map x 7→ Df(x) : U →
L(Rn,Rm) is continuous at a. More explicitely

∀ ε > 0, ∃ δ > 0 such that if ∥x− a∥ < δ ⇒ ∥Df(x)−Df(a)∥op < ε .

Proposition 3.3.6. Let U ⊂ Rn be open. Then f : U → Rm is continuously differentiable on U if
and only if ∂f : U → Rm,n is continuous on U .
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Proof. Note that for T ∈ L(Rn,Rm) we can write µ(T )ij = ⟨ei, T (ej)⟩ and thus µ : L(Rn,Rm) →
Rm,n is a continuous map.

By Theorem 3.3.1, if Df(x) exists, then (∂jfi(x))ij = µ(Df(x)). Thus if Df is continuous on U
then the partial derivatives of f are continuous on U .

Conversely, if the partial derivatives of f are continuous on U then by Theorem 3.3.4 we have that
Df(x) exists for all x ∈ U . The equivalence of the Frobenius norm and the operator norm (see
(2.1)) then directly yields that Df has to be continuous on U .

Remark 3.3.7: Note that by this theorem, we can check continuous differentiablity by checking
if the partial derivatives of f are continuous.

Notation.
C1(U ;Rm) := {f : U → Rm | ∂f : U → Rm,n is continuous} .

We also write C1(U) := C1(U ;R).

3.4 Geometric approximation and approximation of functions

3.4.1 Tangent to a curve

Let γ : [a, b] → Rm, γ(t) = (x1(t), . . . , xm(t)), be a continuously differentiable parametrisation of
a curve C = γ([a, b]) ⊂ Rm. By this we mean that the functions dx1

dt , . . . ,
dxm
dt are all continuous.

Assume that γ′(t) = (dx1
dt , . . . ,

dxm
dt ) ̸= 0 ∀ t ∈ [a, b], i.e., the parametrisation γ is regular. Using the

standard definition of derivative for all the coordinate functions of γ, we can then interpret γ′(t)
as the vector tangent to C at γ(t).1 The line Lγ(t) tangent to C at γ(t) is parameterised by

ℓ(h) = γ(t) + γ′(t)h.

But γ′(t) = ∂γ(t) and therefore, the affine linear approximation of h 7→ γ(t + h) by h 7→ γ(t) +
∂γ(t)h = ℓ(h) is a parametrisation of the tangent line Lγ(t). In other words, the affine linear
approximation of h 7→ γ(t + h) by h 7→ γ(t) + ∂γ(t)h for small h corresponds to the geometric
approximation of C by Lγ(t) near γ(t).

In the special case that C is itself a line, then Lγ(t) is the same as C. This is the geometric
manifestation of the fact that, the best affine linear approximation of an affine linear map is
itself.

1We can also view γ(t) as the position of a particle at time t and then γ′(t), also denoted γ̇(t), is the velocity of the
particle.
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3.4.2 Tangent plane of a surface

Let U ⊂ R2 be open and let f : U → R3 be a continuously differentiable parametrisation of a surface
S = f(U) ⊂ R3. By this we mean that if f(u, v) = (x(u, v), y(u, v), z(u, v)) then all six partial
derivatives xu, yu, zu, xv, yv and zv are continuous. Assume that ∂f is of rank 2, the maximal rank
that it can have, at all points of U , i.e., the parametrisation f is regular. Since

fu = (xu, yu, zu), fv = (xv, yv, zv) and ∂f =

xu xv
yu yv
zu zv


we see that ∂f is of rank 2 if, and only if, fu and fv are linearly independent.2 As in the preceding
discussion for a curve C, the affine linear approximation of (h, k) 7→ f(u+ h, v + k) by

(h, k) 7→ f(u, v) + ∂f(u, v)(h, k) = f(u, v) + hfu(u, v) + kfv(u, v)

is then a paramtrisation of the affine plane f(u, v) + Tf(u,v)S tangent to S at f(u, v). Once again,
the affine linear approximation of (h, k) 7→ f(u + h, v + k) for small h and k corresponds to the
geometric approximation of S by f(u, v) + Tf(u,v)S near f(u, v).

3.4.3 Graph of a scalar function of 2 variables

Given U ⊂ R2, g : U → R , the graph of g, graph(g) is the surface parameterised by

f(x, y) = (x, y, g(x, y)).

For example, if g(x, y) =
√
1− x2 − y2, x2+ y2 < 1, then f(x, y) = (x, y,

√
1− x2 − y2) is another

parametrisation of the upper hemisphere.

Note that fx = (1, 0, gx) and fy = (0, 1, gy) are linearly independent for any function g. A parametri-
sation of the plane tangent to graph(g) at (x, y, g(x, y)) is given by

(h, k) 7→ f(x, y) +Df(x, y)(h, k) = (x, y, g(x, y)) + h(1, 0, gx) + k(0, 1, gy)

= (x+ h, y + k, g(x, y) + hgx + kgy)

=
(
x+ h, y + k, g(x, y) + ⟨(h, k),∇g(x, y)⟩

)
.

Thus we see that g is not differentiable at (x0, y0) ∈ U if, and only if, graph(g) does not have a
tangent plane at (x0, y0, g(x0, y0)). For example, (x, y) 7→ ∥(x, y)∥ =

√
x2 + y2 is not differentiable

at (0, 0) because none of its partial derivatives exist at (0, 0). We see this geometrically by noting
that the graph of (x, y) 7→ ∥(x, y)∥ on R2 is a rotationally symmetric cone about the z-axis with
an apex at the origin where the cone does not have a tangent plane.

2For example,
f(u, v) := ((cos v)(sinu), (sin v)(sinu), cosu), 0 < v < 2π, 0 < u < π,

is a regular parametrisation of the unit sphere minus the prime meridian, i.e., the semicircle running from the
North Pole (0, 0, 1) to the South Pole (0, 0,−1) via (1, 0, 0).
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Orders of approximation of a function

For arbitrary values of n and m, it is not possible to provide simple geometric interpretations of
Df(x) ∈ L(Rn,Rm) similar to those presented above; consider, for example, n = 3 and m = 2.
Therefore we have to change our viewpoint when defining the derivative from that of rate of change
or tangent line and tangent plane to that of best approximation by a linear map. Linear maps are
the simplest maps, after constant maps, and they are fully understood (rank, eigenvalues, etc.) by
the methods of linear algebra. We can then transfer this knowledge of linear maps to differentiable
maps up to an error that can be quantified by (3.4).

Recalling Taylor’s theorem, we see that

(i) a function h 7→ f(x + h) which is continuous at h = 0 admits an approximation by the
constant f(x). The error of the approximation is measured by ε = ε|h|0 and therefore, this
approximation is said to be of zeroth order in h.

(ii) a function h 7→ f(x + h) which is differentiable at h = 0 can be approximated by the affine
linear map h 7→ f(x) +Df(x)h. According to (3.4), the error of the approximation is now
measured by ε|h| and therefore, this approximation is said to be of first order (equivalently,
linear) in h. Furthermore, for small h, ε|h| ≪ ε, i.e., this first order approximation is
much better (i.e., the error is smaller) than that demanded by continuity, or even Lipschitz
continuity.

(iii) Later on in this module, we shall show that if h 7→ f(x+h) is twice differentiable at h = 0 then
it admits an approximation of the form h 7→ f(x) +Df(x)h + (quadratic polynomial in h).
The error of the approximation is now measured by ε|h|2 and therefore, this approximation
is said to be of second order (equivalently, quadratic) in h. Quadratic polynomials are also
studied in linear algebra under the topic of symmetric bilinear forms.

The above discussion should make clear that, when discussing derivatives of functions of several
variables, the significance of derivative moves away from that of rate of change to that of approxi-
mation by polynomials which are ‘simple’ enough to be amenable to detailed study.



4 The inverse function theorem

Motivation. Consider I ⊂ R an open interval and f : I → R be continuously differentiable on I.
Assume for a ∈ I that f ′(a) > 0 (alternatively f ′(a) < 0). Since x 7→ f ′(x) is continuous, there
exists an open subinterval J ⊂ I, a ∈ J such that f ′(x) > 0 (alternatively f ′(x) < 0) for all x ∈ J .
Thus the mean value theorem yields that f is strictly increasing (strictly decreasing) on J . This
implies that f is injective on J and W = f(J) ⊂ R is an open interval. From Analysis I we know
that the inverse f−1 :W → J exists and is differentiable on W with

(f−1)′(y) =
1

f ′(f−1(y))
.

Recall that this formula follows directly from differentiating the relation y = f(f−1(y)) in y and
using the chain rule.

Remark 4.0.1: (1) Note that we do not have a control on the size of J .

(2) Note that f ′(a) ̸= 0 implies that the derivative of f at a, seen as a linear map

Df(a) : R → R, h 7→ f ′(a)h

is invertible.

(3) We can alternatively look at graph(f) ⊂ R2. From the discussion in Section 3.4 we recall that
differentiability of f at a is equivalent to the statement that graph(f) is well approximated around
(a, f(a)) by the affine line

L := {(a+ h, f(a) + f ′(a)h) ∈ R2 |h ∈ R} .

Note that f ′(a) ̸= 0 is equivalent to the statement that L is not parallel to the x-axis, i.e. both the
projections πx, πy to each coordinate axis are bijections between L and the x-axis as well as L and
the y-axis, respectively. The continuous differentiability of f then yields that the same holds for
graph(f) in a neighboorhood of (a, f(a)). This is equivalent to the local invertibility of f .

Recall that in higher dimension a linear map L : Rn → Rm is invertible if and only if m = n and
detL ̸= 0. So if we want to show local invertability of a map f : U → Rm, where U ⊂ Rm is open,
we should assume m = n and detDf(a) ̸= 0 as well as that f is continuously differentiable. This
will be the content of the inverse function theorem. We first need two little lemmata.

Lemma 4.0.2. Let U ⊂ Rn be open. Assume that f : U → R has a local minimum (maximum) at
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a ∈ U , that is there exists ε > 0 such that

f(x) ≥ f(a)
(
f(x) ≤ f(a)

)
∀x ∈ B(a, ε) ⊂ U .

Assume that for some i ∈ {1, . . . , n}, ∂if(a) exists. Then ∂if(a) = 0.

Proof. See Question 4 on Example sheet 2.

Lemma 4.0.3. Let B(a, r) ⊂ Rn and f : B(a, r) → Rn be such that all partial derivatives ∂jfi
exists on B(a, r) and

|∂jfi(x)| ≤M

for all x ∈ B(a, r), i, j ∈ {1, . . . , n}. Then

∥f(x)− f(y)∥ ≤ n2M∥x− y∥

for all x, y ∈ B(a, r).

Proof. See the proof of Question 5 on Example Sheet 2.

Theorem 4.0.4 (Inverse Function Theorem). Let U ⊂ Rn be open and assume f : U → Rn is
continuously differentiable on U . For a ∈ U assume further that det(Df(a)) ̸= 0 (alternatively
det(∂f(a)) ̸= 0). Then there is an open neighborhood V ⊂ U of a and an open neighborhood
W ⊂ Rn of f(a) such that f : V →W has a continuous inverse f−1 :W → V which is continuously
differentiable and

(4.1) D(f−1)(y) =
(
Df(f−1(y))

)−1

for all y ∈W .

Proof. Define λ := Df(a) ∈ L(Rn). Since det(Df(a)) = det(λ) ̸= 0 we see that λ is invertible.
Note that the Inverse Function Theorem holding for f is equivalent to it holding for λ−1 ◦ f . But
we have by the chain rule

D(λ−1 ◦ f)(a) = D(λ−1)(f(a)) ◦Df(a) = λ−1 ◦Df(a) = In ,

where In is the identity map on Rn. Thus we can w.l.og. assume that Df(a) = λ = In.

Step 1: f is injective in a neighborhood around a.

Since f is continuously differentiable on U we can choose ε > 0 (sufficiently small) such that on
B(a, ε) ⊂ U it holds

det(Df(x)) ̸= 0 ∀x ∈ B(a, ε)(4.2) ∣∣∂jfi(x)− δji
∣∣ = ∣∣∂jfi(x)− ∂jfi(a)

∣∣ < 1

2n2
∀ 1 ≤ i, j ≤ n and x ∈ B(a, ε)(4.3)
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We then consider g(x) = f(x)− x on B(a, ε). By (4.3)∣∣∂jgi(x)∣∣ < 1

2n2
∀ 1 ≤ i, j ≤ n and x ∈ B(a, ε) .

Thus Lemma 4.0.3 yields

(4.4) ∥f(x)− x− (f(y)− y)∥ = ∥g(x)− g(y)∥ ≤ 1

2
∥x− y∥ ∀x, y ∈ B(a, ε) .

Note that instead of g(x) = f(x)− x we could have chosen

g̃(x) = f(x)−
(
f(a) +Df(a)(x− a)

)
= f(x)− x− f(a) + a

to arrive at the same result. I.e. with (4.4) we are measuring here how quickly f deviates from its
affine linear approximation at a. Combining (4.4) with the reverse triangle inequality yields

∥x− y∥ − ∥f(x)− f(y)∥ ≤ ∥f(x)− x− (f(y)− y)∥ ≤ 1

2
∥x− y∥

and thus

(4.5) ∥x− y∥ ≤ 2∥f(x)− f(y)∥ ∀x, y ∈ B(a, ε) ,

which yields the desired injecitvity. Note that by continuity (4.5) extends to all x, y ∈ B(a, ε).

Step 2: f is surjective in a neighborhood around a.1

Note that (4.5) implies that for all x ∈ ∂B(a, ε)

∥f(x)− f(a)∥ ≥ ε

2
=: d .

Let W := {w ∈ Rn | ∥w − f(a)∥ < d/2} = B(f(a), d/2). Thus if w ∈W and x ∈ ∂B(a, ε) we have

(4.6) ∥w − f(a)∥ < d

2
≤ ∥w − f(x)∥ ,

since f(x) ̸∈ B(f(a), d).

Claim: For any w ∈W there exists a unique x ∈ B(a, ε) such that f(x) = w.

Consider

g : B(a, ε) → R, g(x) := ∥w − f(x)∥2 =
n∑

j=1

(wj − fj(x))
2 .

Note that g is clearly continuous and thus attains its minimum on B(a, ε). If x ∈ ∂B(a, ε), by
(4.6), we have

g(a) < g(x)

and thus the minimum is not attained on ∂B(a, ε). But g is clearly differentiable on B(a, ε), so

1See Section A.1 in the appendix for a proof using the contraction mapping principle.
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Lemma 4.0.2 yields that there is a point x ∈ B(a, ε) (where g attains its minimum) such that
∂ig(x) = 0 for all i = 1, . . . , n, i.e.

2

n∑
j=1

(wj − fj(x))∂ifj(x) = 0 .

Denoting the column vector (i.e. the n× 1 matrix) with entries wj − fj(x) by p we see that we can
write this equality as

2(∂f(x))T p = 0 .

But since by (4.2) det((∂f(x))T ) = det(∂f(x)) ̸= 0, this implies p = 0 and thus w = f(x).
Uniqueness follows from (4.5).

Step 3: Continuity and differentiability of f−1.

Let V := B(a, ε)∩ f−1(W ) (which is open, since f is continuous). We have shown that f : V →W
has an inverse f−1 :W → V . We can rewrite (4.5) as

(4.7) ∥f−1(v)− f−1(w)∥ ≤ 2∥v − w∥ ∀ v, w ∈W ,

and thus f−1 is (Lipschitz) continuous.

It remains to show that f−1 is differentiable. Let x ∈ V and µ := Df(x) ∈ GL(Rn)

Claim: f−1 is differentiable at w = f(x) and D(f−1)(w) = µ−1.

We first note that the claim that D(f−1)(w) = µ−1 = (Df(x))−1 gives (4.1). Note that since f is
continuously differentiable, (4.1) implies that f−1 is continuously differentiable (recall Proposition
2.4.8). Furthermore, by definition

f(y) = .f(x) + µ(y − x) +R(x, y − x)

where

(4.8) lim
y→x
y ̸=x

∥R(x, y − x)∥
∥y − x∥

= 0 ,

and thus
µ−1(f(y)− f(x)) = y − x+ µ−1(R(x, y − x)) .

Since x = f−1(w) and there is a unique v ∈W such that y = f−1(v), we can write this as

f−1(v) = f−1(w) + µ−1(v − w)− µ−1
(
R(f−1(w), f−1(v)− f−1(w))

)
So we need to show that

(4.9) lim
v→w
v ̸=w

∥µ−1R(f−1(w), f−1(v)− f−1(w)∥
∥v − w∥

= 0 .
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Note that for v ̸= w we can estimate

∥µ−1R(f−1(w), f−1(v)− f−1(w)∥
∥v − w∥

≤ ∥µ−1∥op
∥R(f−1(w), f−1(v)− f−1(w))∥

∥f−1(v)− f−1(w)∥

· ∥f
−1(v)− f−1(w)∥

∥v − w∥

(4.10)

Note that since f−1 is continuous we have f−1(v) → f−1(w) as v → w and so (4.8) yields

lim
v→w
v ̸=w

∥R(f−1(w), f−1(v)− f−1(w))∥
∥f−1(v)− f−1(w)∥

= 0 .

But (4.7) implies that the second term on the RHS in (4.10) is bounded from above by 2, so we
obtain (4.9).

Example 4.0.5: Consider f : R2 → R2, (x, y) 7→ (xy, x2 + y2). We consider (z, w) in the image,
i.e. z = f1(x, y) = xy and w = f2(x, y) = x2 + y2. We first note that f(R2) ⊂ Ω := {(z, w) ∈
R2 |w ≥ 0}. Note that we have

∂f(x, y) =

(
y x
2x 2y

)
and thus det(∂f(x, y)) = 2y2 − 2x2. Thus Df(x, y) is invertible for x ̸= ±y.

For (z, w) ∈ Ω we want to solve (x, y) = f−1(z, w). For z ̸= 0 we have y = z/x and thus

w = x2 + y2 = x2 +
z2

x2
⇔ x4 − x2w + z2 = 0 ,

which has solutions

x = ±

(
w ±

√
w2 − 4z2

2

)1/2

y =
z

x
= ±z

(
w ±

√
w2 − 4z2

2

)−1/2

provided 0 ≤ w2 − 4z2 = (x2 + y2)2 − 4x2y2 = (x2 − y2)2. Note that the choice of signs for x
determines y. I.e. we have for z ̸= 0:

• If w2−4z2 > 0 then any point (z, w) has 4 preimages and the above formulas yield 4 (smooth)
local inverses for f . Note that in this case we are in a stable situation: changing (z, w) a bit
still yields 4 solutions.

• If w2 − 4z2 = 0, (i.e. x = ±y) then any point (z, w) has 2 preimages. Note that in this case
we are in an instable situation: changing (z, w) a bit still yields either 4 or 2 or no solutions.

• If w2 − 4z2 < 0, then (z, w) ̸∈ f(R2). Again this is a stable situation: changing (z, w) a bit
still yields no solution.

For z = 0 we have either x = 0 and y = ±
√
w or y = 0 and x = ±

√
w. So in this case we also have
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4 preimages provided w ̸= 0 (this is still the stable case above). For (z, w) = (0, 0) we only have
one preimage (x, y) = (0, 0)

Computing ∂f−1(z, w) is difficult. But ∂f−1(z, w) = (∂f(x, y))−1 and thus

∂f−1(z, w) =

(
y x
2x 2y

)−1

=
1

2(y2 − x2)

(
2y −x
−2x y

)

Geometric interpretation. Note that by fixing z ̸= 0 we have xy = z, i.e. (x, y) lie on the
hyperbolas determined by xy = z. Fixing w > 0 gives that w = x2 + y2, i.e. (x, y) lies on a
circle with radius w1/2. So if w2 > 4z2, then the circe of radius w1/2 intersects the hyperbolas
{(x, y) ∈ R2 |xy = z} in 4 points. If w2 < 4z2 then the circle of radius w1/2 does not intersect the
hyperbolas {(x, y) ∈ R2 |xy = z}. If w2 = 4z2 then the circle of radius w1/2 touches the hyperbolas
{(x, y) ∈ R2 |xy = z} in 2 points.

Note that the case w2 > 4z2 is the stable case, i.e. jiggling (z, w) a bit gives always 4 solutions. But
the last case (i.e. w2 = 4z2, that is x = ±y) is the instable case (i.e. where det(Df) = 0). Jiggling
(z, w) a bit gives either 4 solutions, 2 solutions or no solution!



5 The implicit function theorem

Motivation. Consider f : R2 → R, f(x, y) = x2 + y2 − 1. Note that the set S := {(x, y) ∈
R2 | f(x, y) = 0} is the unit circle. Thus if f(a, b) = 0 and a ̸= ±1 there exist open intervals
I ∋ a, J ∋ b such that for all x ∈ I there exists a unique y ∈ J (i.e. (x, y) ∈ I × J) such that
f(x, y) = 0.

So we can define g : I → J by g(x) = y and thus for all x ∈ I we have f(x, g(x)) = 0. Explicitly in
our case, we have

g+(x) =
√

1− x2 if b > 0 and g−(x) = −
√

1− x2 if b < 0 .

Note that g± are differentiable if x ̸= ±1.

We say that g± are implicitly defined by the equation f(x, y) = 0. Note that if a = ±1 is impossible
to find such a function g. Nevertheless, note that around (±1, 0) we can write x as a (smooth)
function of y.

Differentiating the equation f(x, g(x)) = 0 yields by the chain rule

∂x(f(x, g(x))) = 0 ⇔ ∂xf(x, g(x)) + ∂yf(x, g(x))∂xg(x) = 0

and thus
∂xg(x) = −(∂yf(x, g(x)))

−1∂xf(x, g(x)) ,

provided ∂yf(x, g(x)) ̸= 0. In our case at hand this yields

∂xg±(x) = −x
y
= − x

g±(x)
= ∓ x√

1− x2
,

which we can check by explicitly differentiating g±.

A more complicated example. Take f : R3 → R, f(x, y, z) = y2+xz+ z2− ez and consider the
set S := {(x, y, z) ∈ R3 | f(x, y, z) = 0}. Note that we can’t explicitly solve for z in terms of x, y.
Nevertheless, assume that in a neighborhood of (a, b, c) ∈ S there is a smooth function g(x, y) such
that z = g(x, y) for all (x, y, z) ∈ S. Then we can compute the partial derivatives of g (without
knowing g):

0 = ∂x(f(x, y, g(x, y)) = ∂xf(x, y, g(x, y)) + ∂zf(x, y, g(x, y))∂xg(x, y) ,

0 = ∂y(f(x, y, g(x, y)) = ∂yf(x, y, g(x, y)) + ∂zf(x, y, g(x, y))∂yg(x, y) ,
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and thus at z = g(x, y)

∂xg(x, y) = −∂xf(x, y, z)
∂zf(x, y, z)

= − z

x+ 2z − ez

∂yg(x, y) = −∂yf(x, y, z)
∂zf(x, y, z)

= − 2y

x+ 2z − ez

So at (−2, e, 2) ∈ S we have

∂xg(−2, e) = − 2

2− e2

∂yg(−2, e) = − 2e

2− e2
.

General situation. Consider Rn+m = Rn × Rm and for a point z ∈ Rn × Rm write z = (x, y)
with x ∈ Rn, y ∈ Rm. Assume we have functions fi : Rn × Rm → R for i = 1, . . . ,m (i.e.
f : Rn ×Rm → Rm). Assume fi(a, b) = 0 for i = 1, . . . ,m. When can we find for each x ∈ Rn near
a a unique point y ∈ Rm near b such that fi(x, y) = 0 for i = 1, . . . ,m?

Let us consider the linear case, i.e. L ∈ L(Rn×Rm,Rm). This uniquenely determines S ∈ L(Rn,Rm)
and T ∈ L(Rm,Rm) such that L(z) = L(x, y) = S(x) + T (y) (i.e. S(x) := L(x, 0) and T (y) :=
L(0, y)). We then want to solve

0 = L(z) = S(x) + T (y)

uniquely for y ∈ Rm. This implies that T ∈ L(Rm,Rm) has to be invertible and

y = −T−1(S(x)) =: g(x),

i.e. we can write y as a function of x.

Motivated by the linear case (and having the Inverse Function Theorem in mind), we can formulate
the implicit function theorem.

Theorem 5.0.1 (Implicit Function Theorem). Let U ⊂ Rn × Rm be open and f : U → Rm be
continuously differentiable. For (a, b) ∈ U such that f(a, b) = 0 assume that the m × m matrix
M = (∂n+jfi(a, b))i,j is invertible, i.e. det(M) ̸= 0. Then there is A ⊂ Rn an open neighborhood
of a and B ⊂ Rm an open neighborhood of b and a continuously differentiable function g : A → B
such that f(x, g(x)) = 0 for all x ∈ A.

Proof. We aim to apply the inverse function theorem. Note to do that we need a function from
Rn × Rm → Rn × Rm whose derivative is invertible at (a, b). Define

F : Rn × Rm → Rn × Rm, F (x, y) = (x, f(x, y))
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Note that we then have schematically

∂F (a, b) =

(
In 0
∗ M

)
and thus det(∂F (a, b)) = det(M) ̸= 0. By the Inverse Function Theorem, Theorem 4.0.4 there is
an open neighborhood V ⊂ Rn × Rm of (a, b), which we can assume is of the form V = A × B
(A ⊂ Rn open and B ⊂ Rm open) and W ⊂ Rn × Rm open neighborhood of F (a, b) = (a, 0), such
that F : A × B → W has a differentiable inverse h : W → A × B. Since F is the identity in the
first n coordinates we also have h(x, y) = (x, k(x, y)) for some differentiable function k :W → B.

Let π : Rn × Rm → Rm, (x, y) 7→ y and thus π ◦ F = f . This yields

f(x, k(x, y)) = (f ◦ h)(x, y) = ((π ◦ F ) ◦ h)(x, y) = (π ◦ (F ◦ h))(x, y) = π(x, y) = y .

Thus f(x, k(x, 0)) = 0 and we can define g(x) : A→ B by g(x) := k(x, 0).

Remark 5.0.2: (1) Note that instead of saying that det(M) ̸= 0 we could equivalently ask that
the linear map L : Rm → Rm, y 7→ Df(a, b)(0, y) is invertible.

(2) It is not completely natural to ask that the m×m matrixM of the last m columns of the Jacobi
matrix ∂f(a, b) is invertible. The more natural assumption is that Df(a, b) (equivalently ∂f(a, b))
has full rank, i.e. rank m. Thus after relabelling the coordinates of Rn×Rm (i.e. switching column
vectors in ∂f(a, b)) we can assume that the m×m matrix M of the last m columns of the ∂f(a, b)
is invertible, and we are in the setup above.

(3) We have from the above theorem that f(x, g(x)) = 0 for all x ∈ A. Differentiating this equation
yields for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} by the chain rule

0 = ∂j(fi(x, g(x))) = ∂jfi(x, g(x)) +

m∑
l=1

∂n+lfi(x, g(x))∂jgl(x) .

We can write this as

M ·

∂jg1(x)
...

∂jgm(x)

 = −

∂jf1(x, g(x))
...

∂jfm(x, g(x))


and thus since M is invertible∂jg1(x)

...
∂jgm(x)

 = −M−1 ·

∂jf1(x, g(x))
...

∂jfm(x, g(x))



Note that since f is continuously differentiable, this implies that g is continuously differentiable
as well (since g is continuous). One can furthermore show that if f ∈ Ck(Rn+m;Rm) then g ∈
Ck(Rn;Rm).



5.1. LEVEL SETS AND SUBMANIFOLDS OF EUCLIDEAN SPACE 34

5.1 Level sets and submanifolds of Euclidean Space

Let U ⊂ Rn+m be open and f : U → Rm be continuously differentiable. For c ∈ Rm consider the
level set

f−1(c) := {x ∈ Rn+m | f(x) = c} .

Definition 5.1.1 (Regular Value). We say that c is a regular value of f provided Df(x) has full
rank (i.e. rank m) for all x ∈ f−1(c).

Remark 5.1.2: (1) Note that if f−1(c) = ∅, then we also call c a regular value of f .

(2) For U ⊂ Rn+1 open and f : U → R, i.e. m = 1 in the above setup, then the condition that c is
a regular value is equivalent to ∇f(x) ̸= 0 for all x ∈ f−1(c).

We see that the Implicit Function Theorem and Remark 5.0.2 (2) directly implies:

Proposition 5.1.3. Let U ⊂ Rn×Rm be open and f : U → Rm be continuously differentiable. Let
c ∈ Rm be a regular value of f . Then for every x ∈ S := f−1(c) there is an open neighborhood V of
x such that S ∩ V can be written as the graph of a continuously differentiable function g : A→ Rm

(where A ⊂ Rn open, after suitably relabelling the coordinates).

On the other hand consider A ⊂ Rn open and g : A → Rm continuously differentiable. Let
S := graph(g) ⊂ A × Rm. Writing z ∈ Rn × Rm again as z = (x, y) we can consider the function
G : A × Rm, (x, y) 7→ y − g(x). Note that DG(z) has rank m for all z ∈ A × Rm and graph(g) =
G−1(0). Thus the graph of a function can always be written as the level set of a regular value of a
function. This motivates the following definition.

Definition 5.1.4 (Submanifolds of Euclidean space). Let S ⊂ Rn and 0 ≤ k ≤ n− 1. S is called
a k-dimensional submanifold of Rn if for each x ∈ S there exists U ⊂ Rn an open neighborhood of
x and f : U → Rn−k such 0 is a regular value of f and S ∩ U = f−1(0).

Note that by Proposition 5.1.3 this is equivalent to asking that for each x ∈ S there exists U ⊂ Rn

an open neighborhood of x such that S ∩U can be written as the graph of a function from an open
set in Rk to Rn−k.

Remark 5.1.5 (Tangent plane to a graph): Consider again A ⊂ Rn open and g : A → Rm

continuously differentiable. Let S := graph(g) ⊂ A×Rm. Recall that as discussed in Section 3.4.2
and Section 3.4.3 (extended here to all dimensions) the tangent plane to S at a = (x, g(x)) is the
affine plane a+ TaS where TaS is the vector space spanned by the n linearly independent vectors

e1 +
m∑
j=1

∂1gjen+j , e2 +
m∑
j=1

∂2gjen+j , · · · , en +
m∑
j=1

∂ngjen+j .

Assume we can also write S∩U = f−1(0) where 0 is the regular value of a continuously differentiable
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function f : U → Rm and U ⊂ Rn × Rm an open neighborhood of a. Since f(x, g(x)) = 0 we can
differentiate to see that

Df(a)
(
ei +

m∑
j=1

∂igjen+j

)
= 0

for all i = 1, . . . , n. But this implies that

TaS ⊂ kerDf(a) .

Furthermore, since a is a regular value of f and thus Df(a) : Rn × Rm → Rm has full rank, we
have by rank-nullity that dimkerDf(a) = n. Since dimTaS = n we have

TaS = kerDf(a) .



6 Second order derivatives

6.1 The Hessian

For U ⊂ Rn open, recall that if f : U → R is differentiable at x then Df(x) ∈ L(Rn,R) =: (Rn)∗.

(Rn)∗ is the space of linear funtionals on Rn also called the dual space of Rn. Note that if {e1, . . . , en}
is the standard basis of Rn then the standard basis of (Rn)∗ is given by the linear maps ωi : Rn → R
for i = 1, . . . , n defined via

ωi(ej) = δij .

(Note that we can also write ωi(·) = ⟨ei, ·⟩, using that the standard basis is orthonormal). We can
thus write any L ∈ (Rn)∗ as

L =
n∑

i=1

L(ei)ωi .

Using the basis {ω1, . . . , ωn} we can thus identify (Rn)∗ again with Rn. Note that if in coordinates
we identify elements in Rn with column vectors, i.e. elements in Rn,1, then elements in (Rn)∗ can
be identified with row vectors, i.e. elements in R1,n. So in coordinates if h ∈ Rn and L ∈ (Rn)∗,
i.e.

h =

h1...
hn

 and L =
(
l1 · · · ln

)
Then

L(h) =
n∑

i=1

L(ei)ωi(h) =
n∑

i=1

liωi(h) =
n∑

i=1

lihi =
(
l1 · · · ln

)h1...
hn

 .

Now assume that f ∈ C1(U), i.e. the map Df : U → (Rn)∗ given by x 7→ Df(x) is continuous.
Suppose further that Df is differentiable at x ∈ U , i.e. there exists H ∈ L(Rn, (Rn)∗) such that

(6.1) Df(x+ h) = Df(x) +H(h) +R(x, h)

where

(6.2) lim
h→0
h̸=0

∥R(x, h)∥op
∥h∥

= 0.

We denote H, if it exists, by D2f(x).

36
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Note that for h ∈ Rn then H(h) ∈ (Rn)∗ (and is linear in h) so we can apply it to another vector
k ∈ Rn (and it is linear in k). Thus we can see D2f(x) as a bilinear form on Rn, i.e.

D2f(x) : Rn × Rn → R, (h, k) 7→ D2f(x)(h, k) .

Note that in coordinates

Df(x) =

n∑
i=1

Df(x)(ei)ωi =

n∑
i=1

∂if(x)ωi

or in terms of matrices ∂f : U → R1,n, that is,

x 7→ ∂f(x) =
(
∂1f(x) · · · ∂nf(x)

)
.

That is we can see x 7→ ∂if(x) as the coordinate functions of the map x 7→ Df(x). Thus if
D2f(x) ∈ L(Rn, (Rn)∗) exists then by Theorem 3.3.1 we have that the second partials of f exist at
x and

D2f(x)(ei, ej) = ∂2jif(x) :=
(
∂j(∂if)

)
(x) .

In coordinates, for h, k ∈ Rn, i.e.

h =

h1...
hn

 and k =

k1...
kn

 ,

we have

D2f(x)(h, k) = D2f(x)

( n∑
i=1

hiei ,

n∑
j=1

kjej

)
=

n∑
i,j=1

D2f(x)(ei, ej)hikj =

n∑
i,j=1

∂2jif(x)hikj ,

which we can write as

D2f(x)(h, k) = hT
(
∂2f(x))k =

(
h1 · · · hn

)∂
2
11f(x) · · · ∂21nf(x)
...

...
∂2n1f(x) · · · ∂2nnf(x)


k1...
kn

 ,

where we define the n× n matrix

(6.3) ∂2f(x) :=

∂
2
11f(x) · · · ∂21nf(x)
...

...
∂2n1f(x) · · · ∂2nnf(x)

 .

The matrix ∂2f(x) is called the Hessian of f at x and it is also denoted by Hess f(x). It is also
common to write

Hess f(x) =


∂2f
∂x2

1
(x) . . . ∂2f

∂x1∂xn
(x)

...
...

∂2f
∂xn∂x1

(x) . . . ∂2f
∂x2

n
(x)

 .
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As we shall see below, even if all the second order partials ∂2f
∂xj∂xi

(x) exist, (6.1) (together with

(6.2)) may still not hold.

6.2 Commutativity of second order partial derivatives

Proposition 6.2.1 (D2f exists implies that second order partial derivatives at x commute). Let
U ⊂ R2 be open and f ∈ C1(U). For (x, y) ∈ U suppose that D2f(x, y) exists. Then ∂212f(x, y) =
∂221f(x, y).

Remark 6.2.2: Note that if U ⊂ Rn open and f ∈ C1(U), a ∈ U and D2f(a) exists, then for
i, j ∈ {1, . . . n}, i < j we can consider for (h, k) ∈ R2 with ∥(h, k)∥ < ε and ε > 0 sufficiently small

(h, k) 7→ f̃(h, k) := f(a1, . . . , ai + h, . . . , aj + k, . . . , an)

and apply the above statement to f̃ at (x, y) = (0, 0) to obtain

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a) ∀ i, j ∈ {1, . . . , n},

i.e. Hess f(a) is a symmetric matrix. One can also phrase this in saying that D2f(a)(h, k) is a
symmetric bilinear form.

Proof of Proposition 6.2.1. Pick δ > 0 so that (x+ h, y + k) ∈ U if |h| < δ and |k| < δ. Define

σ(h, k) := f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y)

Fix k ∈ (−δ, δ) and set
ηk(s) := f(x+ s, y + k)− f(x+ s, y) .

Observe that σ(h, k) = ηk(h)− ηk(0). So, by the Mean Value Theorem for real valued functions of
a single variable, ∃ θ1 ∈ (0, 1) such that

(6.4) σ(h, k) = η′k(θ1h)h =
(
∂1f(x+ θ1h, y + k)− ∂1f(x+ θ1h, y)

)
h.

Similarly, fix h ∈ (−δ, δ) and set

ξh(t) := f(x+ h, y + t)− f(x, y + t) .

Then σ(h, k) = ξh(k)− ξh(0) and ∃ θ2 ∈ (0, 1) such that

(6.5) σ(h, k) = ξ′h(θ2k) k =
(
∂2f(x+ h, y + θ2k)− ∂2f(x, y + θ2k)

)
k.
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We now use the assumption that D2f(x, y) exists and write (6.1) in the following matrix form:(
∂1f(x+ h, y + k) ∂2f(x+ h, y + k)

)
=
(
∂1f(x, y) ∂2f(x, y)

)
+
(
h k

)(α a

b β

)
+
(
r1(h, k) r2(h, k)

)
(6.6)

where

∂2f(x, y) :=

(
α a
b β

)
and

(6.7) lim
(h,k)→(0,0)
(h,k)̸=(0,0)

|ri(h, k)|
∥(h, k)∥

= 0 for i ∈ {1, 2}

Using (6.6), (6.4) and (6.5) can be rewritten as

σ(h, k) =
(
(αθ1h+ bk)− αθ1h+ r1(θ1h, k)− r1(θ1h, 0)

)
h,

σ(h, k) =
(
(ah+ βθ2k)− βθ2k + r2(h, θ2k)− r2(0, θ2k)

)
k.

Setting h = k and equating the right hand sides of the above equations gives

(b− a)h2 =
(
r2(h, θ2h)− r2(0, θ2h)− r1(θ1h, h) + r1(θ1h, 0)

)
h.

Dividing both sides by h2 ̸= 0, taking the limit as h→ 0 and using (6.7) yields a = b as required.

Corollary 6.2.3. Assume that U ⊂ Rn is open, f ∈ C1(U) and assume Hess f(x) exists and is
continuous on U . Then for all x ∈ U the matrix Hess f(x) is symmetric (i.e. all second order
partial derivatives of f at x commute).

Proof. The continuity of x 7→ Hess f(x) together with Theorem 3.3.4 yields that x 7→ Df(x) is
differentiable for all x ∈ U . Proposition 6.2.1 then yields the statement.

Definition of Ck spaces. Recall the definition of C0 and C1

C0(U,Rk) := {f : U → Rk | f is continuous}
C1(U,Rk) := {f : U → Rk | ∂f : U → Rk,n is continuous}.

Similarly, we define

C2(U) = C2(U,R) := {f ∈ C1(U) | ∂2f : U → Rn,n is continuous}
and C2(U,Rk) := {f : U → Rk | f1, . . . , fk ∈ C2(U)}, where f = (f1, . . . , fk).

If we wish to consider the third derivative of f : U → R, we identify Rn,n with Rn2
and proceed as
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for the second derivative of f . However, we shall have no need for this. Nevertheless, we define:

Ck(U,Rm) = {f : U → Rm : all partial derivatives of f up to, and including, order k exist

and are continuous on U}.

Ck(U,R) is abbreviated to just Ck(U). We say that u ∈ C∞(U) if u ∈ Ck(U) for all k ∈ N∪{0}.

Example 6.2.4 (Second order partial derivatives may not commute): Define f : R2 → R by

f(x, y) = xy

(
x2 − y2

x2 + y2

)
if (x, y) ̸= (0, 0), f(0, 0) = 0.

We shall show below that

(6.8)
∂2f

∂x∂y
(0, 0) = 1 but

∂2f

∂y∂x
(0, 0) = −1.

Remark 6.2.5: Using polar coordinates x = r cos θ, y = r sin θ, f can be written as xy cos(2θ)
which is approximately equal to xy near the x-axis (θ = 0) but is approximately equal to −xy near
the y-axis (θ = π/2). This explains (6.8).

Formal Proof of (6.8). On observing that

x2 − y2

x2 + y2
= 1− 2y2

x2 + y2
=

2x2

x2 + y2
− 1

we easily see that

∂f

∂x
= y

(
x2 − y2

x2 + y2

)
+ xy

(
4y2x

(x2 + y2)2

)
= y

(
x2 − y2

x2 + y2
+

4x2y2

(x2 + y2)2

)
if (x, y) ̸= (0, 0)

and that, similarly,

∂f

∂y
= x

(
x2 − y2

x2 + y2
− 4x2y2

(x2 + y2)2

)
if (x, y) ̸= (0, 0).

Furthermore,
∂f

∂x
(0, 0) = lim

x→0

f(x, 0)− f(0, 0)

x
= 0

and
∂f

∂y
(0, 0) = lim

y→0

f(0, y)− f(0, 0)

y
= 0.

Therefore,

∂2f

∂x∂y
(0, 0) = lim

x→0

∂f
∂y (x, 0)−

∂f
∂y (0, 0)

x
= lim

x→0

x

x
= 1
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and
∂2f

∂y∂x
(0, 0) = lim

y→0

∂f
∂x (0, y)−

∂f
∂x (0, 0)

y
= lim

y→0

−y
y

= −1

thereby verifying (6.8).

Remark 6.2.6: For f in the preceding example, D2f(0, 0) does not exist, even though all the
second order partials do. For if it did, then by the preceding proposition, the mixed second order
partials would have to commute, which they do not.

6.3 Second order Taylor expansion

Recall that for f ∈ C2((b, c)) we have the second order Taylor expansion around a ∈ (b, c) ⊂ R and
h ∈ R such that a+ h ∈ (b, c)

f(a+ h) = f(a) + f ′(a)h+ 1
2f

′′(a)h2 +R(a, h)

where

lim
h→0
h̸=0

|R(a, h)|
h2

= 0 .

Remark 6.3.1: In the usual Taylor expansion, if one makes the stronger assumption that f ∈
C3((b, c)), one can show that for some θ ∈ (0, 1) (depending on h)

R(a, h) = f ′′′(a+ θh)h3 .

We will show a higher dimensional analogue of the above result.

Theorem 6.3.2 (Second order Taylor expansion). Let U ⊂ Rn be open, convex and a ∈ U . Then
for f ∈ C2(U) and h ∈ Rn such that a+ h ∈ U it holds

f(a+ h) = f(a) +Df(a)(h) + 1
2D

2f(a)(h, h) +R(a, h)

= f(a) +
n∑

i=1

∂if(a)hi +
1

2

n∑
i,j=1

∂2ijf(a)hihj +R(a, h)

where

lim
h→0
h̸=0

|R(a, h)|
∥h∥2

= 0 .

Proof. Since U is convex we have a + th ∈ U ∀ t ∈ [0, 1] and, keeping h fixed, we can define
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g : [0, 1] → R by

g(t) := f(a+ th) + (1− t)
n∑

i=1

∂if(a+ th)hi +
1

2
(1− t)2

n∑
i,j=1

∂2ijf(a)hihj .

Note that by the chain rule g ∈ C0([0, 1]) ∩ C1((0, 1)) and

(6.9) g(1) = f(a+ h) and g(0) = f(a) +

n∑
i=1

∂if(a)hi +
1

2

n∑
i,j=1

∂2ijf(a)hihj .

By the Mean Value Theorem for real valued functions of a single real variable there exists θ ∈ (0, 1)
such that

(6.10) g(1)− g(0) = g′(θ).

By the chain rule,

g′(t) =
n∑

i=1

∂if(a+ th)hi −
n∑

i=1

∂if(a+ th)hi + (1− t)

n∑
i,j=1

∂2ijf(a+ th)hihj

− (1− t)
n∑

i,j=1

∂2ijf(a)hihj(6.11)

= (1− t)

n∑
i,j=1

(
∂2ijf(a+ th)− ∂2ijf(a)

)
hihj .

By continuity of ∂2f at a, given ε > 0, ∃ δ > 0 such that

(6.12) ∥h∥ < δ ⇒ |∂2ijf(a+ th)− ∂2ijf(a)| < ε ∀ i, j ∈ {1, . . . , n} and ∀ t ∈ [0, 1].

Set R(a, h) := g′(θ). Then, substituting (6.9) and (6.11) in (6.10) we see that

f(a+ h) = f(a) +
n∑

i=1

∂if(a)hi +
1

2

n∑
i,j=1

∂2ijf(a)hihj +R(h)

For ∥h∥ < δ we have from (6.12) that |R(a, h)| ⩽ εn2∥h∥2 and thus

lim
h→0
h̸=0

|R(a, h)|
∥h∥2

= 0 .
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6.4 Critical points, local maxima and minima, saddles

6.4.1 Critical points

Definition 6.4.1. Let U ⊂ Rn be open and f ∈ C1(U). A point p ∈ U is calles a critical point of
f if ∇f(p) = 0.

Recall that Lemma 4.0.2 implies that if f has a local maximum or minimum at p then ∇f(p) = 0.

We will now try to understand the Hessian at a critical point p of f to deduce if p is a local
maximum or minimum or neither. We first need some further linear algebra.

Recall that a symmetric matrix P ∈ Rn,n is

(i) positive definite if xTPx = ⟨x, Px⟩ > 0 ∀x ∈ Rn \ {0}.

(ii) positive semidefinite if xTPx = ⟨x, Px⟩ ≥ 0 ∀x ∈ Rn.

(iii) negative definite if xTPx = ⟨x, Px⟩ < 0 ∀x ∈ Rn \ {0}.

(iv) negative semidefinite if xTPx = ⟨x, Px⟩ ≤ 0 ∀x ∈ Rn.

(v) indefinite if there exist x, y ∈ R such that xTPx > 0 and yTPy < 0.

Diagonalisation of symmetric matrices. Recall from Advanced Linear Algebra that every
symmetric matrix can be diagonalised by an orthogonal matrix, i.e. there exist real eigenvalues
λ1, . . . , λn corresponding to an orthonormal set of eigenvectors {v1, . . . , vn}. Thus with respect to
this basis of eigenvectors P = diag(λ1, . . . , λn). We can write this in the form that there exists an
orthogonal matrix O (the matrix corresponding to the change of basis {v1, . . . , vn} → {e1, . . . , en})
such that

OTPO = diag(λ1, . . . , λn) .

Proposition 6.4.2. If we arrange the eigenvalues of P in an increasing order, i.e. λ1 ≤ · · · ≤ λn,
then for all x ∈ Rn

λ1∥x∥2 ≤ ⟨x, Px⟩ ≤ λn∥x∥2 .

Proof. Let {v1, . . . , vn} be the orthonormal basis of Rn consisting of eigenvectors of P , i.e. Pvi =
λivi. For x ∈ Rn let ai := ⟨vi, x⟩. Then x =

∑n
i=1 aivi and ∥x∥2 =

∑n
i=1 a

2
i . Thus

⟨x, Px⟩ =
n∑

i=1

(ai)
2λi ≥ λ1

n∑
i=1

(ai)
2 = λ1∥x∥2



6.4. CRITICAL POINTS, LOCAL MAXIMA AND MINIMA, SADDLES 44

and similarly

⟨x, Ps⟩ =
n∑

i=1

(ai)
2λi ≤ λn

n∑
i=1

(ai)
2 = λn∥x∥2 .

6.4.2 Second order derivative test

We will now discuss how we can use information on the Hessian to deduce if a critical point is a
local maximum, local minimum or a saddle point.

Proposition 6.4.3. Let U ⊂ Rn be open and f ∈ C2(U). Assume that ∇f(p) = 0 for some p ∈ U .

(i) If Hess f(p) is positive definite then f has a strict local minimum at p.

(ii) If Hess f(p) is negative definite then f has a strict local maximum at p.

(iii) If Hess f(p) is indefinite then f has neither a local minimum nor a local maximum at p and
p is called a saddle point. (If Hess f(p) is indefinite and has a zero eigenvalue then p is
called a degenerate saddle point. However, we shall not distinguish between nondegenerate
and degenerate saddle points, and we shall refer to both of them as just saddle points.)

(iv) If Hess f(p) is positive or negative semidefinite but not definite then the test is inconclusive,
i.e. f may have a minimum at p, or a maximum or a saddle point.

Example 6.4.4 (Simplest examples to illustrate the second derivative test):

(i) f(x, y) = x2+y2. f has a minimum at (0, 0), ∇f(0, 0) = 0 and Hess f(0, 0) =
(
2 0
0 2

)
is positive

definite.

(ii) f(x, y) = −x2 − y2. f has a maximum at (0, 0), ∇f(0, 0) = 0 and Hess f(0, 0) =
(−2 0

0 −2

)
is

negative definite.

(iii) f(x, y) = x2 − y2. f has a saddle point at (0, 0), ∇f(0, 0) = 0 and Hess f(0, 0) =
(
2 0
0 −2

)
is

indefinite.

(iv) f(x, y) = x2 + y4 has a strict minimum at (0, 0), g(x, y) = −x2 − y4 has a strict maximum at
(0, 0), f(x, y) = x2 − y4 has a saddle point at (0, 0), f(x, y) = x2 has a nonstrict minimum at
(0, 0), g(x, y) = −x2 has a nonstrict maximum at (0, 0). All these functions have a gradient
that vanishes at (0, 0) and a semidefinite Hessian at (0, 0). Explicitly,

Hess f(0, 0) =

(
2 0
0 0

)
and Hess g(0, 0) =

(
−2 0
0 0

)
.

Proof of Proposition 6.4.3. Set P := Hess f(p). Then, by Taylor’s second order expansion (Theo-
rem 6.3.2),

f(p+ h) = f(p) + 1
2⟨h, Ph⟩+R(p, h).



6.4. CRITICAL POINTS, LOCAL MAXIMA AND MINIMA, SADDLES 45

(i) If P is positive definite, then its smallest eigenvalue λ1 > 0 and there exists δ > 0 such that

0 < ∥h∥ < δ ⇒ |R(h)| ⩽ 1
4λ1∥h∥

2

⇒ f(p+ h) ⩾ f(p) + 1
2λ1∥h∥

2 − 1
4λ1∥h∥

2 > f(p),

i.e. f has a strict local minimum at p.

(ii) If P is negative definite, then its largest eigenvalue λn < 0. There exists δ > 0 such that

0 < ∥h∥ < δ ⇒ |R(h)| ⩽ −1
4λn∥h∥

2

⇒ f(p+ h) ⩽ f(p) + 1
2λn∥h∥

2 − 1
4λn∥h∥

2 < f(p),

i.e. f has a strict local maximum at p.

(iii) If P is indefinite, then its smallest eigenvalue λ1 must be negative and its largest eigenvalue
λn must be positive. Set g1(t) := f(p+ tv1), t sufficiently small. Then g1(0) = f(p), g′1(0) =
⟨∇f(p), v1⟩ = 0 and g′′1(0) = ⟨v1, Pv1⟩ < 0 and therefore, g1 has a strict maximum at p.

Similarly, set gn(t) := f(p + tvn), t sufficiently small. Then gn(0) = f(p), g′n(0) = 0 and
g′′n(0) = ⟨vn, Pvn⟩ > 0 and therefore, gn has a strict minimum at p. We have shown that f
has a saddle point at p.

(iv) Let
f+(x, y) := x4 + y4, f−(x, y) := −x4 − y4, f(x, y) := x4 − y4.

f+ has a strict local minimum at (0, 0), f− has a strict local maximum at (0, 0) and f has
a saddle point at (0, 0). Yet, all these functions have a gradient and Hessian that vanish
at (0, 0). Therefore no conclusion can be drawn about a critical point p of a function whose
Hessian at p is positive or negative semidefinite. See also the functions in (iv) of the preceding
set of examples.

Definitiveness test for 2 × 2 symmetric matrices. For a symmetric matrix P ∈ R2,2 it is
possible to gain information on the definiteness of P by looking at its determinant. More precisely

A 2× 2 symmetric matrix P =
(
a b
b c

)
is

(i) positive definite if detP = ac− b2 > 0 and a > 0 or c > 0.

(ii) negative definite if detP > 0 and a < 0 or c < 0.

(iii) indefinite if detP < 0.

(iv) semidefinite if detP = 0.

Proof. Let λ1 and λ2 be the two real eigenvalues of P . Then, considering the characteristic poly-
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nomial of P

(a− λ)(c− λ)− b2 = λ2 − (a+ c)λ+ ac− b2

= (λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2,

we see that
ac− b2 = λ1λ2, a+ c = λ1 + λ2.

(i) If ac− b2 > 0, then ac > 0 and therefore a > 0 iff c > 0. It follows that

ac− b2 > 0 and a > 0 or c > 0 ⇔ λ1, λ2 > 0 ⇔ P is positive definite.

(ii) If ac− b2 > 0, then a < 0 iff c < 0 and therefore,

ac− b2 > 0 and a < 0 or c < 0 ⇔ λ1, λ2 < 0 ⇔ P is negative definite.

(iii) ac− b2 < 0 ⇔ λ1, λ2 have opposite signs ⇔ P is indefinite.

(iv) ac−b2 = 0 ⇔ at least one of λ1 and λ2 must vanish ⇔ P is positive or negative semidefinite.

Example 6.4.5: Consider f(x, y) = x3 − 3x sin y, x ∈ R, y ∈ (−π/4, 3π/4). Classify the three
criticial points of f .

Solution. We have
∇f(x, y) = (3x2 − 3 sin y,−3x cos y).

At a critical point, both equations x2 − sin y = 0 and x cos y = 0 must hold. Starting with the
second equation we see that either x = 0 or y = π/2.

Looking at the first equation, if x = 0 then sin y = 0 and therefore, y = 0 since y has to lie in
(−π/4, 3π/4). So f has a critical point at (0, 0).

Again looking at the first equation, if y = π/2 then x2 = 1 and therefore, x = 1 or x = −1. So f
has two more critical points at (1, π/2) and at (−1, π/2).

Hess f(x, y) =

(
6x −3 cos y

−3 cos y 3x sin y

)
.
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Hess f(0, 0) =

(
0 −3
−3 0

)
which is indefinite, and therefore f has a saddle point at (0, 0).

Hess f(1, π/2) =

(
6 0
0 3

)
which is positive definite, and therefore

f has a strict local minimum at (1, π/2).

Hess f(−1, π/2) =

(
−6 0
0 −3

)
which is negative definite, and therefore

f has a strict local maximum at (1, π/2).



7 Integration

In this section we will discuss Riemann intergration in higher dimensions.

7.1 Basic definitions

Definition 7.1.1. (i) Let a, b ∈ Rn be s.t. ai < bi for all i ∈ {1, . . . , n}. We call the set

Ra,b := {x ∈ Rn | ai ≤ xi ≤ bi for all i ∈ {1, . . . , n}}

a rectangle. Note that this a natural extension of the notion of an interval.

(ii) Recall that a partition of an interval [c, d] ⊂ R is a (finite) sequence t0, . . . , tk s.t. c = t0 ≤
t1 ≤ · · · ≤ tk = d. This divides [c, d] into k subintervals [ti−1, ti] for i = 1, . . . , k.

A partition of a rectangle [a1, b1] × · · · × [an, bn] is a collection P = (P1, . . . , Pn) where each Pi is
a partition of [ai, bi]. Assume Pi is a partition of [ai, bi] into Ni subintervals of [ai, bi]. Then P
subdivides P into N = N1 · · ·Nn subrectangles. We call this the subrectangles of the partition P .

Let A ⊂ Rn be a rectangle, f : A → R and P a partition of A. Then for each subrectangle S of P
let

mS(f) := inf{f(x) |x ∈ S} MS(f) := sup{f(x) |x ∈ S}

and let
v(S) := (q1 − p1) · · · (qn − pn)

be the volume of S = Rp,q. We define the lower sum and upper sum of f w.r.t. P as

L(f, P ) :=
∑
S∈P

mS(f)v(S) U(f, P ) :=
∑
S∈P

MS(f)v(S) .

It clearly holds that L(f, P ) ≤ U(f, P ).

Lemma 7.1.2. Suppose the partition P ′ refines P (that is each subrectangle of P ′ is contained in
a subrectangle of P ), then

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f, P ) .

Proof. Each subrectangle S of P is divided into S1, . . . , Sα subrectangles of P ′, so v(S) = v(S1) +
· · ·+ v(Sα). Now mS(f) ≤ mSi(f) since Si ⊂ S and thus

mS(f)v(S) = mS(f)v(S1) + · · ·+mS(f)v(Sα) ≤ mS1(f)v(S1) + · · ·+mSα(f)v(Sα)

48
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which yields
L(f, P ) ≤ L(f, P ′) .

The proof of the statement about upper sums is analogous.

Remark 7.1.3: Let P, P ′ be two partitions of a rectangle A. Then there exists a partition P ′′ of
A which refines both P and P ′.

Corollary 7.1.4. If P and P ′ are any two partitions of the rectangle A. Then

L(f, P ) ≤ U(f, P ′)

Proof. Let P ′′ be a partition that refines both P and P ′. Then

L(f, P ) ≤ L(f, P ′′) ≤ U(f, P ′′) ≤ U(f, P ) .

Definition 7.1.5. Let A ⊂ Rn be a rectangle and f : A → R and denote with P(A) the set of
partitions of A. Denote

L

∫
A
f = sup

P∈P(A)
L(f, P ) and U

∫
A
f = inf

P∈P(A)
U(f, P ) .

It follows from Corollary 7.1.4 that L
∫
A f ≤ U

∫
A f . We say f is integrable on the rectangle A if

f is bounded and

L

∫
A
f = U

∫
A
f .

In this case, we denote ∫
A
f = L

∫
A
f = U

∫
A
f ,

which we call the integral of f over A.

Theorem 7.1.6 (Riemann’s criterion). Let A ⊂ Rn be a rectangle and f : A → R be bounded.
Then f is integrable on A if and only if for all ε > 0 there exists P ∈ P(A) such that

U(f, P )− L(f, P ) < ε .

Proof. If he above criterion holds, then clearly

sup
P∈P(A)

L(f, P ) = inf
P∈P(A)

U(f, P )
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and f is integrable on A. On the other hand, if f is integrable on A then for any ε > 0 there exist
P, P ′ ∈ P(A) such that

U(f, P )− L(f, P ′) < ε .

Let P ′′ be a partition that refines both P and P ′. Then by Lemma 7.1.2

U(f, P ′′)− L(f, P ′′) ≤ U(f, P )− L(f, P ′) < ε .

This proves the statement.

Example 7.1.7: (1) Let f : A → R be a constant function, i.e. f(x) = c for some c ∈ R and for
all x ∈ A. Then for any P ∈ P(A) and subrectangle S we have mS(f) = MS(f) = c and thus
L(f, P ) = U(f, P ) =

∑
S cv(S) = cv(A). Thus f is integrable on A and

∫
A f = cv(A).

(2) Every continuous function f : A→ R is integrable, see assignment sheet 3.

(3) Let f : [0, 1]× [0, 1] → R be such that

f(x, y) =

{
0 if x rational ,

1 if x irrational .

Then for any P we have U(f, P ) = 1 and L(f, P ) = 0 and thus f is not integrable.

We collect some important properties of the integral.

Proposition 7.1.8. Let A ⊂ Rn a closed rectangle and f, g : A → R. Then the following state-
ments hold.

(a) Assume f is integrable and f = g except at finitely many points. Then g is integrable and∫
A f =

∫
A g.

(b) Assume both f, g are integrable. Then f + g is integrable and
∫
A f + g =

∫
A f +

∫
A g.

(c) Assume f is integrable and c ∈ R. Then cf is integrable and
∫
A cf = c

∫
A f .

(d) Assume f is integrable and let P be a partition of A. Then for each subrectangle S ∈ P the
restriciton of f to S, denoted with f |S, is integrable on S. Furthermore

∫
A f =

∑
S∈P

∫
S f |S.

(e) Assume both f, g are integrable and f ≤ g. Then
∫
f ≤

∫
g.

(f) Assume f is integrable. Then |f | is integrable and
∣∣∫

A f
∣∣ ≤ ∫A |f |.

Proof. See example sheet 5.

7.2 Measure zero and integrable functions

Definition 7.2.1. A ⊂ Rn has (n-dimensional) measure 0 if for all ε > 0 there exists a cover
{U1, U2, . . .} of A by closed rectangles such that

∑∞
i=1 v(Ui) < ε.
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Remark 7.2.2: (1) We obviously assume as well that the rectangles Ui are open.

(2) Note that if A has measure 0 and B ⊂ A, then B has measure 0.

(3) Note that if A is countable then A has measure zero. To see this cover A by a sequence of
rectangles Ui with v(Ui) < 2−iε. Then

∑∞
i=1 v(Ui) <

∑∞
i=1 2

−iε = ε.

Proposition 7.2.3. If A = A1 ∪A2 ∪A3 ∪ · · · and each Ai has measure 0, then A has measure 0.

Proof. Let ε > 0. Since Ai has measure 0, there is a cover {Ui,1, Ui,2, . . .} of Ai by closed rectangles
such that

∑∞
j=1 v(Ui,j) < ε2−i. Then the collection of all Ui,j is a cover of A. We can now

arrange this array into one sequence V1, V2, V3, . . . (see picture in lectures). Clearly
∑∞

i=1 v(Vi) ≤∑∞
i=1 ε2

−i = ε.

We have the following characterisation of bounded integrable functions. For the proof (which is
neither difficult nor long) see [1, Theorem 3.8].

Theorem 7.2.4. Let A ⊂ Rn be a closed rectangle and f : A → R be bounded. Let B := {x ∈
A | f is not continuous at x}. Then f is integrable if and only if B is a set of measure 0.

Remark 7.2.5: Note that this implies that if f, g : A→ R are bounded and integrable on A, then
f · g is integrable on A, see assignment sheet 3.

We have this far dealt only with integrals of functions over rectangles. Integrals of other sets are
easily reduced to this type. For C ⊂ Rn, the characteristic function χC of C is defined via

χC(x) :=

{
0 x ̸∈ C ,

1 x ∈ C .

If C ⊂ A for some closed rectangle A and f : A → R bounded, then
∫
C f is defined as

∫
A f · χC ,

provided f · χC is integrable. By the remark above this holds if f and χC are integrable.

We have the following characterisation when χC is integrable, for a proof see assignment sheet 3.

Theorem 7.2.6. For C ⊂ A for some closed rectangle A, the function χC is integrable if and only
if the boundary of C has measure 0.

7.3 Fubini’s theorem

In this section we will discuss and prove Fubini’s theorem, i.e. when it is possible to compute a
higher dimensional integral by computing one-dimensional iterated integrals.

Idea: consider f : [a, b] × [c, d] → R positive and continuous. Let t0 < · · · < tk be a partition of
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[a, b] and divide [a, b]× [c, d] into k strips [ti−1, ti]× [c, d] (compare the picture in the lectures). Let
gx(y) := f(x, y), then the area under graph(f) above {x} × [c, d] is∫ d

c
gx =

∫ d

c
f(x, y) dy .

So the volume under graph(f) above [ti−1, ti]× [c, d] is therefore approximately equal to (ti− ti−1) ·∫ d
c f(x, y) dy for any x ∈ [ti−1, ti]. Thus∫

[a,b]×[c,d]
f =

k∑
i=1

∫
[ti−1,ti]×[c,d]

f ≈
k∑

i=1

(ti − ti−1) ·
∫ d

c
f(xi, y) dy ≈

∫ b

a

(∫ d

c
f(x, y) dy

)
dx

for some choice of xi ∈ [ti−1, ti].

Problem: f might be integrable on [a, b] × [c, d], but not continuous. Even more,
∫ d
c f(x0, y) dy

might not be defined for some x0 ∈ [a, b]. This will make the statement of Fubini’s theorem a
bit cumbersome, but we will see in the remarks that there are various special cases where simpler
statements are possible.

Theorem 7.3.1 (Fubini’s theorem). Let A ⊂ Rn, B ⊂ Rm be closed rectangles and f : A×B → R
be integrable. For x ∈ A let gx : B → R, gx(y) = f(x, y) and

L(x) = L

∫
B
gx = L

∫
B
f(x, y) dy U(x) = U

∫
B
gx = U

∫
B
f(x, y) dy .

Then L and U are integrable on A and∫
A×B

f =

∫
A
L =

∫
A

(
L

∫
B
f(x, y) dy

)
,∫

A×B
f =

∫
A
U =

∫
A

(
U

∫
B
f(x, y) dy

)
.

The integrals on the RHS are called iterated integrals of f .

Proof. Let PA be a partition of A and PB a partition of B. This yields a partition of A× B with
subrectangles of the form SA × SB. Thus

L(f, P ) =
∑
S

mS(f)v(S) =
∑

SA,SB

mSA×SB
(f)v(SA × SB) =

∑
SA

∑
SB

mSA×SB
(f)v(SB)

 v(SA) .

If x ∈ SA, then clearly mSA×SB
(f) ≤ mSB

(gx). Thus for x ∈ SA∑
SB

mSA×SB
(f)v(SB) ≤

∑
SB

mSA×SB
(gx)v(SB) ≤ L

∫
B
gx = L(x) .
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Taking the infimum over SA yields∑
SB

mSA×SB
(f)v(SB) ≤ mSA

(L)

which implies

L(f, P ) =
∑
SA

∑
SB

mSA×SB
(f)v(SB)

 v(SA) ≤ L(L, PA) .

Similarly we have U(U , PA) ≤ U(f, P ) and thus

L(f, P ) ≤ L(L, PA) ≤ U(L, PA) ≤ U(U , PA) ≤ U(f, P ) .

Now note that any partition P of A×B can be written as a product of partitions PA and PB, and
since f is integrable we have

sup
P
L(f, P ) = inf

P
U(f, P ) =

∫
A×B

f .

This implies ∫
A×B

f =

∫
A
L .

Similarly for U the statement follows from

L(f, P ) ≤ L(L, PA) ≤ L(U , PA) ≤ U(U , PA) ≤ U(f, P ) .

Remark 7.3.2: (1) If for all x ∈ A we have that gx(y) = f(x, y) is integrable on B then

L(x) = U(x) =
∫
B
f(x, y) dy

and

(7.1)

∫
A×B

f =

∫
A

(∫
B
f(x, y) dy

)
dx .

This certainly occurs if f : A×B → R is continuous.

(2) Often gx is not integrable for finitely many x. In this case we can still write

L(x) =
∫
B
f(x, y) dy

for all but finitely many x. Since
∫
A L remains unchanged if L is redefined at a finite number of

points (say we set
∫
B f(x, y) dy = 0 at these points) we still have (7.1).

(3) There are cases when this will not work and Theorem 7.3.1 must be used as stated. For example,
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let f : [0, 1]× [0, 1] → R be defined via

f(x, y) :=


1 if x is irrational,

1 if x is rational and y is irrational,

1− 1
q if x = p

q in lowest terms and y is rational.

Then f is integrable (exercise) and
∫
[0,1]×[0,1] f = 1. Now

∫ 1
0 f(x, y) dy = 1 if x is irrational, and

does not exist if x is rational. Therefore h(x) =
∫ 1
0 f(x, y) dy is not integrable even if we set

h(x) = 0 when the integral does not exist.

(4) If A = [a1, b1]× · · · × [an, bn] and f : A→ R is sufficiently nice, we can apply Fubini’s theorem
repeatedly to obtain ∫

A
f =

∫ bn

an

(
· · ·
(∫ b1

a1

f(x1, . . . , xn) dx1

)
· · ·
)
dxn .

Note that this also allows to interchange the order of integration, provided again that f is sufficiently
nice (say continuous).

7.4 Partitions of unity

We introduce a highly important tool in the theory of integration. Recall that for U ⊂ Rn open, a
function is in C∞(U) if it is in Ck(U) for every k = 0, 1, 2, . . .. We record the following lemma.

Lemma 7.4.1. (1) Let U ⊂ Rn be open and C ⊂ U be compact. Then there is a compact set
D ⊂ U such that C is contained in the interior of D.

(2) There is a function f ∈ C∞(U) such that f(U) ⊂ [0, 1], f(x) = 1 for all x ∈ C and f = 0
outside some closed set contained in U .

Proof. See example sheet 5.

Recall that for A ⊂ Rn a family of open sets O is called an open cover of A, provided

A ⊂
⋃
O∈O

O .

Theorem 7.4.2 (Existence of partition of unity). Let A ⊂ Rn and O be an open cover of A. Then
there is a collection of C∞ functions Φ, with each φ ∈ Φ defined on U = ∪O∈OO, with the following
properties

(1) For each x ∈ U and φ ∈ Φ it holds 0 ≤ φ(x) ≤ 1.
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(2) For each x ∈ A there is an open neighborhood Vx of x such that all but finitely many φ ∈ Φ
vanish on Vx.

(3) For each x ∈ A it holds
∑

φ∈Φ φ(x) = 1 (note that by (2) this sum is finite on Vx).

(4) For each φ ∈ Φ there is an open set O ∈ O such that φ = 0 outside some closed set contained
in O.

Remark 7.4.3: A collection Φ satisfying (1)-(3) is called a smooth partition of unity for A. If Φ
also satisfies (4), it is said to be subordinate to the cover O.

Proof. We divide the proof in several cases.

Case 1. A is compact

If A is compact, then a finite number of O1, . . . , Om of open sets in O cover A. It clearly suffices
to construct a partition of unity subordinate to the cover {O1, . . . , Om}. We will first find compact
sets Di ⊂ Oi whose interiors cover A. The sets Di are constructed inductively as follows. Suppose
that D1, . . . , Dk have been chosen so that {intD1, . . . , intDk, Ok+1, . . . , Om} covers A. Consider

Ck+1 = A \ (intD1 ∪ . . . ∪ intDk ∪Ok+2 ∪ . . . ∪Om) .

Then Ck+1 ⊂ Uk+1 is compact. Hence by Lemma 7.4.1 (1) we can find a compact set Dk+1 such
that

Ck+1 ⊂ intDk+1 and Dk+1 ⊂ Ok+1 ,

and thus {intD1, . . . , intDk+1, Ok+2, . . . , Om} covers A. This constructs the sets D1, . . . , Dm.

Having constructed the sets D1, . . . , Dm, by Lemma 7.4.1 (2), we can choose ψi to be a non-
negative C∞-function which is positive on Di and 0 outside of some closed set contained in Oi.
Since {D1, . . . , Dm} covers A, we have ψ1(x) + · · · + ψm(x) > 0 for all x in some open set Ω
containing A. On Ω we can define

φi(x) :=
ψi(x)

ψ1(x) + · · ·+ ψm(x)
.

Again by by Lemma 7.4.1 (2) we can then choose η : Ω → [0, 1] a C∞-function which is 1 on A and
0 outside a closed set contained in Ω. Then

{ηφi, . . . , ηφm}

is the desired partition of unity.

Case 2. A = A1 ∪A2 ∪ · · · , where each Ai is compact and Ai ⊂ intAi+1.

For each i let Oi consist of all O ∩ (intAi+1 \ Ai−2) for O ∈ O. Then Oi is an open cover of the
compact set Bi = Ai \ intAi−1. By case 1 there is a partition of unity Φi for Bi subordinate to Oi.
For each x ∈ A, the sum

σ(x) =
∑

φ∈∪iΦi

φ(x)
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is a finite sum in an open neighbourhood of x, since if x ∈ Ai we have φ(x) = 0 for φ ∈ Φj for
j ≥ i + 2. For each φ ∈ ∪iΦi define φ̃(x) = φ(x)/σ(x). The collection of all φ̃ is the desired
partition of unity.

Case 3. A is open.

Let
Ai := {x ∈ A | ∥x∥ ≤ i and dist(x, ∂A) ≥ 1/i}

and apply case 2.

Case 4. A is arbitrary.

Let U = ∪O∈OO. By case 3 there is a partition of unity for U ; this is also a partition of unity for
A.

Remark 7.4.4: (1) We note an important consequence of condition (2) in the above theorem. Let
C ⊂ A be compact. For each x ∈ C there is an open set Vx containing x such that only finitely
many φ ∈ Φ are not 0 on Vx. Since C is compact, finitely many such Vx cover C. Thus only finitely
many φ ∈ Φ are not 0 on in an open neighborhood of C.

(2) We will see that an important application of partitions of unity will be to piece together results
obtained only locally. For example we have so far only defined integrals over (suitable) subsets of
closed rectangles. Partitions of unity can be used to define the integral of a function f over an
open set U ⊂ Rn (even if U is unbounded). See [1, Theorem 3.12]. We will encounter several other
applications later in the course.

7.5 Change of variables formula

Motivation. Assume g : [a, b] → R is continuously differentiable and f : R → R is continuous.
Then substitution implies that ∫ g(b)

g(a)
f =

∫ b

a
(f ◦ g)g′ .

We can see this as follows. Let F : R → R be such that F ′ = f . By the chain rule

(F ◦ g)′ = (f ◦ g)g′

and thus∫ g(b)

g(a)
f = F (g(b))− F (g(a)) = (F ◦ g)(b)− (F ◦ g)(a) =

∫ b

a
(F ◦ g)′ =

∫ b

a
(f ◦ g)g′ .

If we assume that g is injective, and thus g′ ≥ 0 or g′ ≤ 0 on (a, b) we can write this as∫
g([a,b])

f =

∫
[a,b]

f ◦ g |g′| .
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The analog in higher dimensions is given in the following theorem.

Theorem 7.5.1 (Change of variables formula). Let A ⊂ Rn be open, g : A→ Rn be injective and
continuously differentiable. If f : g(A) → R is integrable, then∫

g(A)
f =

∫
A
f ◦ g |det ∂g| .

For a proof see [1, Theorem 3.13 and following remarks]. The proof is not too difficult, but due to
time constraints we have chosen not cover it in this course.

Remark 7.5.2: (1) In case g is an affine map, then vol(g(A)) = | det(∂g)|vol(A) (see example
sheet 5). This confirms the above formula if f is a constant function and g is affine.

(2) By approximating g locally by affine maps (i.e. using that g is assumed to be continuously
differentiable) and (1) one can give a proof of the change of variables formula.



8 The divergence theorem

8.1 Integration on hypersurfaces

Consider S ⊂ Rn. We say that S is a smooth hypersurface if it is an (n−1)-dimensional submanifold
of Rn. Recall from Section 5.1, especially Proposition 5.1.3 and Definition 5.1.4 that this means
that equivalently either (i) or (ii) hold:

(i) For each x ∈ S there exists U ⊂ Rn an open neighborhood of x and f : U → R smooth such
that S ∩ U = f−1(0) and 0 is a regular value of f (i.e. ∇f(x) ̸= 0 for all x ∈ S) .

(ii) For each x ∈ S there exists U ⊂ Rn an open neighborhood of x such that S ∩ U can be
written as the graph of a smooth function g : V → R where V ⊂ Rn−1 is open (note that
Rn−1 corresponds here to the first n−1 coordinates, after suitably relabelling the coordinates).

Definition 8.1.1 (Smooth set). An open set Ω ⊂ Rn is called smooth if ∂Ω is a smooth hypersur-
face in Rn. Note that this implies that for each point x ∈ ∂Ω there is U ⊂ Rn an open neighborhood
of x such that ∂Ω∩U can be written as the graph of a smooth function g : V → R where V ⊂ Rn−1

is open and Ω ∩ U corresponds to the points above the graph of g.

Remark 8.1.2: Assume Ω ⊂ Rn is smooth and bounded. Then one can easily show that ∂Ω
has measure zero (exercise). Thus by the results in Section 7.2 the characteristic function χΩ is
integrable and we can integrate functions over Ω.

Motivation for the definition of the integral along a hypersurface. Recall that for γ :
[a, b] → Rn a regular curve (i.e. γ′(t) ̸= 0 for all t ∈ (a, b)) the length of γ is defined as

l(γ) =

∫ b

a
∥γ′(t)∥ dt

and for a continuous function h : γ([a, b]) → R we can define its integral along γ via∫
γ
h ds :=

∫ b

a
h(γ(t)) ∥γ′(t)∥ dt .

We can see that this does not depend on the paramatrisation of γ, i.e. let ϕ : [c, d] → [a, b] be such
that ϕ(c) = a and ϕ(d) = b and ϕ′(t) > 0 for all t ∈ [c, d]. Consider

γ̃ : [c, d] → Rn, t 7→ (γ ◦ ϕ)(t) ,

58
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which is called a reparametrisation of γ. Note that

γ̃′ = (γ ◦ ϕ)′ = ϕ′ · (γ′ ◦ ϕ)

and we can compute, using the change of variable formula (and that ϕ′ > 0)∫
γ̃
h ds =

∫ d

c
h(γ̃(t)) ∥γ̃′(t)∥ dt =

∫ d

c
h(γ(ϕ(t)) ∥ϕ′(t)γ′(ϕ(t))∥ dt

=

∫ d

c
h(γ(ϕ(t))) ∥γ′(ϕ(t))∥ϕ′(t)dt =

∫ b

a
h(γ(t)) ∥γ′(t)∥ dt =

∫
γ
h ds

Note that if we consider a curve γ in the plane (i.e. in R2), which is given as the graph of a function
f : [a, b] → R, i.e. γ(t) = (t, f(t)) we have that

γ′(t) = (1, f ′(t)) and ∥γ′(t)∥ =
√

1 + (f ′(t))2 ,

and thus for h : γ([a, b]) → R continuous∫
γ
h ds =

∫ b

a
h(t, g(t))

√
1 + (g′(t))2 dt .

We would like to generalise this to be able to integrate over a hypersurface which is given as
the graph of a function f : U → R, where U ⊂ Rn−1 is open. We assume first that f is affine,
i.e. f(x̂) := c+L(x̂) where c ∈ R and L ∈ L(Rn−1,R). Note that this implies that there is ŵ ∈ Rn−1

such that L(v̂) = ⟨ŵ, v̂⟩ for all v̂ ∈ Rn−1. We then consider a parametrisation of S = graph(f) over
U , i.e. the map

F : U → Rn, F (x̂1, . . . , x̂n−1) =
(
x̂1, . . . , x̂n−1, L(x̂1, . . . , x̂n−1)

)
.

We now would like to compute the (n− 1)-dimensional volume of F ([0, 1]× · · · × [0, 1]). To do this
note that for x̂ ∈ U

(8.1) DF (x̂)(v̂) =: L̂(v̂) = (v̂, L(v̂)) = (v̂, ⟨ŵ, v̂⟩)

and
V := DF (x̂)(Rn−1) = TF (x̂)S

is the tangent space of S at F (x̂), compare remark 5.1.5. Note that V is an (n − 1)-dimensional
subspace of Rn. From example sheet 5 we know that the (n− 1)-dimensional volume of F ([0, 1]×
· · · × [0, 1]) is given by the absolute value of the determinant of the linear map L̂ : Rn−1 → V
(computed with respect to an orthonormal basis of Rn−1 and an orthonormal basis of V ). To
compute this we can assume that ŵ ̸= 0, otherwise there is not much to show. We now rotate the
coordinate system in Rn−1 such that en−1 = ŵ/∥ŵ∥ (recall that the determinant of a map remains
unchanged if one rotates a basis to another orthonormal basis). In these coordinates we have from
(8.1) that

L̂(v̂1, . . . , v̂n−1) = (v̂1, . . . , v̂n−1, ∥ŵ∥v̂n−1)

and thus an orthonormal basis of V is given by {e1, . . . , en−2, (1 + ∥ŵ∥2)−1/2(en−1 + ∥w∥en)}. We
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furthermore see that with respect to these orthonormal bases

(8.2) det L̂ =
√
1 + ∥ŵ∥2 .

Recall that for a general smooth function f : U → R we have that its affine approximation at a ∈ U
is given by

x̂ 7→ f(a) +Df(a)(x̂− a) = f(a)− ⟨∇f(a), a⟩+ ⟨∇f(a), x̂⟩ ,

i.e. we can identify ∇f(a) = ŵ in (8.1). This motivates the following definition.

Definition 8.1.3 (Area of a graph). Let U ⊂ Rn−1 be open and f ∈ C1(U). Then the area A of
S = graph(f) ⊂ Rn is defined to be

A(S) =

∫
U

√
1 + ∥∇f∥2 =

∫
U

√
1 + ∥∇f(x̂)∥2 dx̂n−1 .

Furthermore for h ∈ C0(S) we define∫
S
h dA =

∫
U
h ◦ F

√
1 + ∥∇f∥2 =

∫
U
h((x̂, f(x̂)))

√
1 + ∥∇f(x̂)∥2 dx̂n−1 ,

where F : U → Rn : x̂ 7→ (x̂, f(x̂)) and we write dx̂n−1 as a short form for dx1 · · · dxn−1.

We now show that the above definition does not depend on in which direction we write S as a
graph. We consider πi : Rn → Rn the orthogonal projections parallel to the ei-direction and denote
Pi = imπi, i.e. the (n − 1)-dimensional subspace of Rn orthogonal to ei. For U ⊂ Pi open and
f : U → R we write

graphPi
(f) := {x̂+ f(x̂)ei | x̂ ∈ U} ⊂ Rn

for the graph of f over Pi.

Lemma 8.1.4. For i ∈ {1, . . . , n}, f : Ui → R smooth and Ui ⊂ Pi open, let S = graphPi
(f) ⊂ Rn.

Assume that there exists j ̸= i and g : Uj → R smooth with Uj ⊂ Pj open and that we can also
write S = graphPj

(g). Then for h ∈ C0(S) it holds∫
Ui

h ◦ F
√

1 + ∥∇Pif∥2 =
∫
Uj

h ◦G
√

1 + ∥∇Pjg∥2 .

where we denote with ∇Pi ,∇Pj the gradients on Pi, Pj, respectively.

Proof. Let p ∈ S. Since for an open neighborhood U of q there is v ∈ C∞(U) such that S ∩ U =
v−1(0), where 0 is a regular value of v we have by remark 5.1.5 that TpS = kerDv(p) und thus TpS
does not depend on if we write S = graphPi

(f) or S = graphPj
(g).

Consider the maps F : Ui → Rn, x̂ 7→ x̂ + f(x̂)ei and G : Uj → Rn, x̌ 7→ x̌ + g(x̌)ej . Note that
F (Ui) = G(Uj) = S and πi, πj are the inverses of F and G, respectively. For p = F (p̂) = G(p̌) ∈ S
note that

DF (p̂) : Rn−1 → V := TpS and DG(p̌) : Rn−1 → V ,
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where we consider DF (p̂), DG(p̌) not as maps into Rn but into V . Thus by (8.2)

detDF (p̂) =
√
1 + ∥∇Pif(p̂)∥2 and detDG(p̂) =

√
1 + ∥∇Pjg(p̌)∥2 .

Since πi
∣∣
V
: V → Pi is the inverse to DF (p̂) : Rn−1 → V we obtain

detπi
∣∣
V
(p) =

1√
1 + ∥∇Pif(p̂)∥2

.

Consider the map
Ψ : Uj → Ui, x̌ 7→ (πi ◦G)(x̌) .

Note that Ψ is smooth, Ψ(Uj) = Ui and f ◦ Ψ(x̌) = g(x̌). Furthermore, we have by the above
discussion

detDΨ(x̌) = detDπi(G(x̌)) · detDG(x̌) =

√
1 + ∥∇Pjg(x̌)∥2√
1 + ∥∇Pif(x̂)∥2

,

where x̂ = Ψ(x̌). Thus by the change of variable formula, Theorem 7.5.1 we have∫
Ui

h ◦ F
√

1 + ∥∇Pif∥2 =
∫
Ψ(Uj)

h ◦ F
√
1 + ∥∇Pif∥2

=

∫
Uj

h ◦ F ◦Ψ
√

1 + ∥∇Pif∥2 | detDΨ|

=

∫
Uj

h ◦G
√
1 + ∥∇Pjg∥2 .

This yields the desired statement.

We can now define the integral on the boundary of smooth, bounded open set. Note that ∂Ω is
compact, so we can always assume that any open cover of ∂Ω is finite.

Definition 8.1.5. Assume Ω ⊂ Rn is open, bounded and smooth. Denote S := ∂Ω and let O =
{O1, . . . , ON} be a finite open cover of S such that S ∩ Oi can be written as a graph, with graphic
parametrisation Fi : Ui → S ∩Oi where Ui ⊂ Rn−1 is open and bounded, corresponding to fi : Ui →
R. Let Φ be a partition of unity of S subordinate to O. By Remark 7.4.4 (1) we can assume that
Φ = {φ1, . . . , φM} is finite. Since Φ is subordinate to O for each φj ∈ Φ we can choose Oi(j) ∈ O
such that {x ∈ Rn |φj(x) ̸= 0} ⊂ Oi(j). Let h ∈ C0(S). We then define

∫
S
h dA =

M∑
j=1

∫
Ui(j)

(φjh) ◦ Fi(j)

√
1 + ∥∇fi(j)∥2 .

That this definition makes sense we need to check that it does not depend neither on the covering
by graphical parametrisations nor on the choice of partition of unity.

Proposition 8.1.6. The integral
∫
S h dA defined above does not depend on the choice of covering
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O, the graphical parametrisations Fi : Ui → S ∩Oi and the partition of unity Φ.

Proof. Consider Õ = {Õ1, . . . , ÕÑ} a second open cover of S such that S ∩ Õl can be written

as a graph, with graphic parametrisations F̃l : Ũl → S ∩ Õl, corresponding to f̃l : Ũl → R. Let
Φ̃ = {φ̃1, . . . , φ̃M̃} be a partition of unity of S subordinate to Õ, where we similarly assign Õl(m)

to each φ̃m. We can then write

M̃∑
m=1

∫
Ũl(m)

(φ̃mh) ◦ F̃l(m)

√
1 + ∥∇f̃l(m)∥2 =

M∑
j=1

M̃∑
m=1

∫
Ũl(m)

(φjφ̃mh) ◦ F̃l(m)

√
1 + ∥∇f̃l(m)∥2 .

Note that
{x ∈ Rn |φj(x)φ̃m(x) ̸= 0} ⊂ Oi(j) ∩ Õl(m) .

So by Lemma 8.1.4 we have∫
Ũl(m)

(φjφ̃mh) ◦ F̃l(m)

√
1 + ∥∇f̃l(m)∥2 =

∫
Ui(j)

(φjφ̃mh) ◦ Fi(j)

√
1 + ∥∇fi(j)∥2 ,

and thus

M̃∑
m=1

∫
Ũl(m)

(φ̃mh) ◦ F̃l(m)

√
1 + ∥∇f̃l(m)∥2 =

M∑
j=1

M̃∑
m=1

∫
Ũl(m)

(φjφ̃mh) ◦ F̃l(m)

√
1 + ∥∇f̃l(m)∥2

=
M∑
j=1

M̃∑
m=1

∫
Ui(j)

(φjφ̃mh) ◦ Fi(j)

√
1 + ∥∇fi(j)∥2

=
M∑
j=1

∫
Ui(j)

(φjh) ◦ Fi(j)

√
1 + ∥∇fi(j)∥2 .

This gives the desired statement.

8.2 Flux of a vectorfield

For Ω ⊂ Rn open with smooth boundary, recall that for each p ∈ ∂Ω there is an open neighborhood
U of p and v ∈ C∞(U) such that U ∩ ∂Ω = v−1(0), where 0 is a regular value of v. Furthermore
we can assume that v < 0 on Ω ∩ U (otherwise replace v by −v). Recall that by Remark 5.1.5 we
have that Tp∂Ω = kerDv(p). Note that this implies that

Tp∂Ω = {x ∈ Rn | ⟨∇v(p), x⟩ = 0} .

Thus ∇v(p) is normal to Tp∂Ω and since v < 0 on Ω ∩ U we have that ∇v(p) points towards the
outside of Ω. We can then take the outward unit normal to be

ν(q) :=
∇v
∥∇v∥

(q) for all q ∈ ∂Ω ∩ U .
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Note that since this choice is unique, and the above construction works in an open neighborhood
of every point p ∈ ∂Ω we can extend this to a global unit normal along ∂Ω.

Definition 8.2.1 (Outward unit normal). For Ω ⊂ Rn open with smooth boundary we denote with
ν : ∂Ω → Rn the outward pointing unit normal.

For the graph of a function there is nice formula for the unit normal along the graph of f .

Lemma 8.2.2. Let U ⊂ Rn−1 be open and f ∈ C1(U). Then the downward pointing unit normal
of graph(f) at (x̂, f(x̂)) is given by

ν((x̂, f(x̂)) =
1√

1 + ∥∇f∥2(x̂)
(∂1f(x̂), . . . , ∂n−1f(x̂),−1) .

Here ∇ is the gradient on Rn−1.

Proof. See assignment sheet 4.

For V ⊂ Rn open, recall that X ∈ C0(V,Rn) is also a called continuous vectorfield.

Definition 8.2.3 (Flux of a vectorfield). Let Ω ⊂ Rn be open and bounded with smooth boundary.
Let X ∈ C0(∂Ω,Rn) be a continuous vectorfield on ∂Ω. The flux of X through ∂Ω is defined to be∫

∂Ω
⟨X, ν⟩ dA .

8.3 The divergence theorem

Definition 8.3.1. Let V ⊂ Rn be open and X ∈ C1(V,Rn) be a continuously differentiable vector-
field. Then divergence of X = (X1, . . . , Xn) is defined to be

divX(x) =
n∑

i=1

∂iXi(x) ,

for all x ∈ V .

The next lemma covers the trivial case of the divergence theorem.

Proposition 8.3.2 (Divergence theorem: trivial case). Let Ω ⊂ Rn be open and bounded and
X ∈ C1(Ω,Rn) be such that X vanishes outside a closed set contained in Ω. Then∫

Ω
divX = 0
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Proof. Recall that since X vanishes outside a closed set contained in Ω we can extend X by the
zero vectorfield to all of Rn and can treat X as an element of X ∈ C1(Rn,Rn). Let R = Ra,b be any
closed rectangle such that Ω̄ ⊂ intR. Note that since X ∈ C1(Rn,Rn) we have that divX ∈ C0(Rn)
and thus divX is integrable on R. Since X vanishes outside a closed set contained in Ω we have∫

Ω
divX =

∫
R
χΩ divX =

∫
R
divX .

Furthermore, by Fubini and the linearity of the integral∫
R
divX =

∫ b1

a1

· · ·
∫ bn

an

n∑
i=1

∂iXi dxn . . . dx1 =

n∑
i=1

∫ b1

a1

· · ·
∫ bn

an

∂iXi dxn . . . dx1 .

Note that for i ∈ {1, . . . , n} fixed we have by the fundamental theorem of calculus∫ bi

ai

∂iXi(x1, . . . , xn)dxi = Xi(x1, . . . , xi−1, bi, xi+1, . . . , xn)

−Xi(x1, . . . , xi−1, ai, xi+1, . . . , xn)

= 0− 0 = 0 ,

since X vanishes on ∂R. Since by Fubini we can interchange the order of integration we see that∫ b1

a1

· · ·
∫ bn

an

∂iXi dxn . . . dx1 = 0

and thus ∫
Ω
divX =

∫
R
divX =

n∑
i=1

∫ b1

a1

· · ·
∫ bn

an

∂iXi dxn . . . dx1 = 0 .

We now prove a localised version of the divergence theorem.

Proposition 8.3.3 (Divergence theorem: localised version). Let V ⊂ Rn open. Assume R ⊂ V
is a closed rectangle of the form R′ × [an, bn] where R

′ ⊂ U is a ((n-1)-dimensional) rectangle
and U ⊂ Rn−1 is open. Consider f ∈ C1(U) such that an < f(x̂) < bn for all x̂ ∈ R′ and let
S := graph(f |R′) and Ω = {(x̂, t) ∈ R | f(x̂) < t < bn} the region above the graph of f in R. Let
X ∈ C1(V,Rn) be a vectorfield which vanishes on ∂R. Then∫

Ω
divX =

∫
S
⟨X, ν⟩ dA ,

where ν is the downward pointing unit normal of S.

Proof. To start, we claim
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Claim. If φ ∈ C1(V ) and φ = 0 on ∂R, then for any j ∈ {1, . . . , n}

(8.3)

∫
Ω
∂jφ =

∫
S
φνj dA .

Assuming the claim for now, and writing X = (X1, . . . , Xn) we see∫
Ω
divX =

∫
Ω

n∑
j=1

∂jXj =

n∑
j=1

∫
Ω
∂jXj

=
n∑

j=1

∫
S
Xjνj dA =

∫
S

n∑
j=1

Xjνj dA

=

∫
S
⟨X, ν⟩ dA ,

where we used the claim with φ = Xj for each j ∈ {1, . . . , n} from the first to the second line. This
is the desired result.

Proof of claim.

Case j = n.

Note that since for x̂ = (x1, . . . , xn−1) ∈ R′ we have φ(x̂, bn) = 0, the fundamental theorem of
calculus yields

(8.4) −φ(x̂, f(x̂)) = φ(x̂, bn)− φ(x̂, f(x̂)) =

∫ bn

f(x̂)
∂nφ(x̂, xn) dxn .

We can thus compute, using Lemma 8.2.2, (8.4) and Fubini∫
S
φνn dA = −

∫
R′
φ((x̂, f(x̂)))

1√
1 + ∥∇f(x̂)∥2

√
1 + ∥∇f(x̂)∥2 dx̂n−1

=

∫ b1

a1

· · ·
∫ bn−1

an−1

∫ bn

f((x1,...,xn−1))
∂nφ(x1, . . . , xn) dxn dxn−1 · · · dx1

=

∫
Ω
∂nφ .

This yields (8.3) for j = n.

Case j = 1, . . . , n− 1.

Note that by Leibnitz’ rule (i.e. differentiating under the integral sign, see question 4 (a) on assign-
ment sheet 3) and the chain rule, we have

∂

∂xj

(∫ bn

f(x̂)
φ((x̂, xn)) dxn

)
= −φ((x̂, f(x̂)))∂jf(x̂) +

∫ bn

f(x̂)
∂jφ((x̂, xn)) dxn ,
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and thus, since φ vanishes on ∂R∫ bj

aj

∫ bn

f(x̂)
∂jφ((x̂, xn)) dxn dxj =

∫ bj

aj

φ((x̂, f(x̂)))∂jf(x̂) dxj

+

∫ bn

f(x1,...,xj−1,bj ,xj+1,...,xn−1)
φ(((x1, . . . , xj−1, bj , xj+1, . . . , xn)) dxn

−
∫ bn

f(x1,...,xj−1,aj ,xj+1,...,xn−1)
φ(((x1, . . . , xj−1, aj , xj+1, . . . , xn)) dxn

=

∫ bj

aj

φ((x̂, f(x̂)))∂jf(x̂) dxj + 0− 0

=

∫ bj

aj

φ((x̂, f(x̂)))∂jf(x̂) dxj .

(8.5)

We can then compute (where use the notation that a ’̂ ’ over a symbol means that it is omitted),
using Fubini, (8.5) and Lemma 8.2.2∫

Ω
∂jφ =

∫ b1

a1

· · ·
∫ bn−1

an−1

∫ bn

f(x̂)
∂jφ((x̂, xn)dxn dxn−1 · · · dx1

=

∫ b1

a1

· · ·
∫̂ bj

aj

· · ·
∫ bn−1

an−1

∫ bj

aj

∫ bn

f(x̂)
∂jφ((x̂, xn)dxn dxj dxn−1 · · · d̂xj · · · dx1

=

∫ b1

a1

· · ·
∫̂ bj

aj

· · ·
∫ bn−1

an−1

∫ bj

aj

φ((x̂, f(x̂)))∂jf(x̂) dxj dxn−1 · · · d̂xj · · · dx1

=

∫ b1

a1

· · ·
∫ bn−1

an−1

φ((x̂, f(x̂)))∂jf(x̂) dxn−1 · · · dx1

=

∫
R′
φ((x̂, f(x̂)))

∂jf(x̂)√
1 + ∥∇f(x̂)∥2

√
1 + ∥∇f(x̂)∥2dx̂n−1

=

∫
S
φνj dA .

This yields (8.3) for j = 1, . . . , n− 1.

We are now in a position to collect the previous results to give a proof of the divergence theorem.

Theorem 8.3.4 (Divergence theorem). Let V ⊂ Rn be open and Ω be open, bounded with smooth
boundary such that Ω ⊂ V . For any vectorfield X ∈ C1(V,Rn) it holds∫

Ω
divX =

∫
∂Ω

⟨X, ν⟩ dA ,

where ν is the outward unit normal vector to ∂Ω.
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Proof. Since ∂Ω is smooth, we can find for any p ∈ ∂Ω a rectangle Rp ⊂ V , centered at p, such
that after relabeling the coordinates in Rn and/or switching xn 7→ −xn we have that ∂Ω∩Rp is the
graph of fp : R′

p → ((ap)n, (bp)n), where Rp = R′
p × [(ap)n, (bp)n], and Ω ∩ Rp is the region above

graph(fp). Replacing Rp with a slightly smaller rectangle (which we denote again by Rp) we see
that we are in the setup of Proposition 8.3.3.

Note that {intRp}p∈∂Ω is an open cover of ∂Ω. Since ∂Ω is compact, there exists a finite subcover
O = {intRp1 , . . . , intRpN }. By Theorem 7.4.2 and Remark 7.4.4 (1) there is a finite partition of
unity Φ = {φ1, . . . , φM} of ∂Ω subordinate to O.

This yields that for l ∈ {1, . . . ,M} there exists k ∈ {1, . . . , N} such that the vectorfield Xl := φl ·X
satisfies

{x ∈ V |Xl(x) ̸= 0} ⊂ Rpk .

Note that this implies that Xl vanishes on ∂Rpk . Thus we can apply Proposition 8.3.3 to obtain

(8.6)

∫
Ω
divXl =

∫
∂Ω

⟨Xl, ν⟩ dA

for all l ∈ {1, . . . ,M}.

Now consider the function

η : Ω → [0, 1], x 7→ 1−
M∑
l=1

φl(x) .

Note that η ∈ C∞(Ω) and η vanishes outside a closed set contained in Ω. Thus we can extend η
by zero to all of Rn and treat η as an element of C∞(Rn). Furthermore in an open neighborhood
V ′ ⊂ V of Ω we have

M∑
l=1

φl + η = 1 ,

and we can write

X =

M∑
l=1

Xl + ηX on V ′

Since the vectorfield ηX vanishes outside a closed set contained in Ω we have by Proposition 8.3.2
that

(8.7)

∫
Ω
div(ηX) = 0 .
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We can thus combine (8.6) and (8.7) to see that∫
Ω
divX =

∫
Ω
div

(
M∑
l=1

Xl + η ·X

)
=

∫
Ω

(
M∑
l=1

divXl + div(ηX)

)

=
M∑
l=1

∫
Ω
divXl +

∫
Ω
div(ηX) =

M∑
l=1

∫
∂Ω

⟨Xl, ν⟩ dA+ 0

=

∫
∂Ω

⟨X, ν⟩ dA ,

since X =
∑M

l=1Xl on ∂Ω.

This completes the proof of the divergence theorem.

Remark 8.3.5: (1) Physical interpretation: In words, if we see the vectorfield X as the speed
vectorfield of some quantity, then the divergence theorem asserts that the average rate at which
the quantity flows out of Ω (i.e. the flux of X across ∂Ω) is equal to the integral of divX over Ω.
Now the vectorfield must, in a loosed sense, diverge, to have a net flow across ∂Ω. This provides
some justification for the terminology divergence.

(2) Note that if n = 1 we can take Ω = (a, b) for a, b ∈ R. For e1 the unit basis vector in R we
see that the outward unit normal to ∂Ω is given by ν(a) = −e1 and ν(b) = e1. Furthermore for
[a, b] ⊂ (c, d) and a vectorfield X ∈ C1((c, d),R), we can write for x ∈ (c, d)

X(x) = f(x)e1

for f ∈ C1((c, d)). The divergence theorem then implies that∫
(a,b)

divX = ⟨X(a), ν(a)⟩+ ⟨X(b), ν(b)⟩ = f(a)⟨e1,−e1⟩+ f(b)⟨e1, e1⟩ = f(b)− f(a) .

But we also have
div(X)(x) = ∂1f(x) = f ′(x)

and thus ∫
(a,b)

divX =

∫ b

a
f ′(x) dx .

This yields that for n = 1 the divergence theorem is equivalent to the fundamental theorem of
calculus: ∫ b

a
f ′(x) dx = f(b)− f(a) .

(3) Coming back to the physical interpretation, now for n = 1, we have seen that a function
f : [a, b] → R can be thought of as a vector field on the line. For instance, if we think of [a, b] as
a highway, then f(x) could represent the number of vehicles per minute that pass by x; we are
assuming that this rate is a function of position x but not a function of time which, of course, is
unrealistic. Anyway, f ′(x) is then the divergence of f and f(b) − f(a) is the flux of f across the
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boundary ∂(a, b), which consists of just the two points {a, b}. However, f(b) represents the rate at
which traffic is exiting the highway at b and f(a) represents the rate at which traffic is entering the
highway at a. Thus the flux f(b) − f(a) represents the rate at which traffic is building up on the
stretch [a, b] of highway between a and b. The fundamental theorem of calculus (or equivalently
the divergence theorem) states that this flux is equal to the integral of the divergence f ′ of the rate
of traffic flow f along [a, b].

8.3.1 The divergence theorem in the plane

Consider a bounded open set Ω ⊂ R2 with smooth boundary. Note that in this case ∂Ω is compact,
and it can be parametrised by a collection {γ1, . . . , γK} of disjoint, closed, embedded (i.e. no self-
intersections) and regular curves. Here closed means that γi : [ai, bi] → R2 and

γ(k)(ai) = γ(k)(bi)

for all k ∈ N ∪ {0}, in the sense of right and left derivatives. We will say that {γ1, . . . , γK}
parametrise ∂Ω.

Let us for the moment assume that ∂Ω has only one component, parametrised (with the conditions
as above) by γ : [a, b] → R2. Recall that in the definition of the integral along the boundary ∂Ω,
Definition 8.1.5, we considered O = {O1, . . . , ON} be a finite open cover of ∂Ω such that ∂Ω ∩ Oi

can be written as a graph, with graphic parametrisation Fi : (ai, bi) → ∂Ω ∩ Oi, corresponding to
fi : (ai, bi) → R. Considering Φ = {φ1, . . . , φM} a finite partition of unity of ∂Ω subordinate to O
for each φj ∈ Φ we choose Oi(j) ∈ O such that {x ∈ R2 |φj(x) ̸= 0} ⊂ Oi(j). For h ∈ C0(∂Ω) we
then defined ∫

∂Ω
h ds =

M∑
j=1

∫
(ai(j),bi(j))

(φjh) ◦ Fi(j)

√
1 + |f ′i(j)|2 .

But in our case γ : [a, b] → R2 is a global parametrisation of ∂Ω and we have by the invariance of
the integral along a curve under reparametrisation (see the beginning of Chapter 8) that for each
j ∈ {1, . . . ,M} we have∫

(ai(j),bi(j))
(φjh) ◦ Fi(j)

√
1 + |f ′i(j)|2 =

∫
[a,b]

(φjh) ◦ γ ∥γ′∥ =

∫
γ
φjh ds .

This implies∫
∂Ω
h ds =

M∑
j=1

∫
(ai(j),bi(j))

(φjh) ◦ Fi(j)

√
1 + |f ′i(j)|2 =

M∑
j=1

∫
γ
φjh ds =

∫
γ

M∑
j=1

φjh ds =

∫
γ
h ds ,

and thus ∫
∂Ω
h ds =

∫
γ
h ds =

∫ b

a
h ◦ γ ∥γ′∥ dt ,

i.e. both our definitions of the integral along the boundary (for n = 1) and along a curve agree!
(As they should for both definitions to be reasonable).
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We can use the above discussion to restate the Divergence Theorem in the plane.

Theorem 8.3.6 (Divergence Theorem in the Plane). Let V ⊂ R2 be open and Ω be open, bounded
with smooth boundary such that Ω ⊂ V . Assume {γ1, . . . , γK} are disjoint, closed, embedded,
regular curves which parametrise ∂Ω. Then for any vectorfield X ∈ C1(V,R2) it holds∫

Ω
divX =

K∑
i=1

∫
γi

⟨X, ν⟩ ds ,

where ν is the outward unit normal vector to ∂Ω.

Remark 8.3.7: Note that if γi : [ai, bi] → R2 is oriented in such a way that Ω lies locally to the
left of t 7→ γi(t) and γ

′ = (γ′1, γ
′
2), then we can write

ν(γ(t)) =
1

∥γ′(t)∥
Rγ′(t) =

1

∥γ′(t)∥

(
γ′2(t)
−γ′1(t)

)
where R : R2 → R2 is the rotation by π/2 in clockwise direction. (If Ω lies to the left of t 7→ γi(t)
we have to multiply the expression on the RHS by −1). We can thus write∫

γi

⟨X, ν⟩ ds =
∫ bi

ai

⟨X(γ(t)), ν(γ(t))⟩∥γ′(t)∥ dt =
∫ bi

ai

⟨X(γ(t)), Rγ′(t)⟩ dt .

Example 8.3.8: Consider the vectorfield W (x, y) := (x, y) on R2 and the vectorfield V (x, y) :=
1

x2+y2
(x, y) on R2 \ {(0, 0)}. Calculate

(a) div W and div V ,

(b) the flux of V across the circle C1 of radius 1 with centre at (0, 0).

Explain why the answer in (b) does not contradict the divergence theorem and the answer in (a)
for V . Calculate

(c) the flux of V across the circle C2 of radius 2 with centre at (0, 0).

Explain why the answers in (b) and (c) are equal.

Solution.
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(a) div W = ∂
∂x(x) +

∂
∂y (y) = 2.

div V =
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)

=
(x2 + y2)− x(2x)

(x2 + y2)2
+

(x2 + y2)− y(2y)

(x2 + y2)2

= 0.

(b) If (x, y) ∈ C1 then ∥(x, y)∥ = 1 and therefore, the unit normal ν(x, y) at (x, y) ∈ C1 is equal
to (x, y). It follows that∫

C1

⟨V, ν⟩ ds =
∫
C1

⟨(x, y), (x, y)⟩ ds =
∫
C1

1 ds = length(C1) = 2π.

It is not possible to define V at (0, 0) in such a way as to make V continuous (or even differentiable)
there. Therefore, the divergence theorem cannot be applied to V on the unit disk centred at the
origin.

(c) If (x, y) ∈ C2 then ∥(x, y)∥ = 2 and therefore, the unit normal ν(x, y) at (x, y) ∈ C2 is equal
to 1

2(x, y). It follows that∫
C2

⟨V, ν⟩ ds =
∫
C2

1
4⟨(x, y),

(
1
2(x, y)

)
⟩ ds =

∫
C2

1
2 ds =

1
2 length(C2) = 2π.

We may apply the divergence theorem to V on the annulus A := {(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 4}.
Then ∂A = C1 ∪ C2. On C2, the outer unit normal ν to A is equal to 1

2(x, y) = ν(x, y), as in (c).
However, on C1, the outer unit normal ν is equal to −(x, y) = −ν(x, y), i.e. the opposite of the
unit normal in (b). Therefore,∫

∂A
⟨V, ν⟩ ds =

∫
C2

⟨V, ν⟩ ds−
∫
C1

⟨V, ν⟩ ds = 0,

i.e.,

∫
∂A

⟨V, ν⟩ ds =
∫
A
div V dx dy, in agreement with the divergence theorem.

8.3.2 Integration by parts and Green’s formulas

We first note the following little formula. Consider U ⊂ Rn open and X ∈ C1(U,Rn), φ ∈ C1(U).
We then have

(8.8) div(φX) =
n∑

i=1

∂i(φXi) = φ
n∑

i=1

∂iXi +
n∑

i=1

(∂iφ)Xi = φ divX + ⟨∇φ,X⟩ .
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Using the divergence theorem we can generalise integration by parts to higher dimensions - without
appealing to Fubini.

Proposition 8.3.9 (Integration by parts). Let V ⊂ Rn be open and Ω ⊂ Rn be bounded, open with
smooth boundary and Ω̄ ⊂ V . Let u, v ∈ C1(V ) and i ∈ {1, . . . , n}, then∫

Ω
u ∂iv = −

∫
Ω
∂iu v +

∫
∂Ω
uv νi dA

Proof. Consider ei the i-th basis vector in Rn. Note that we can write

∂iv = div(v · ei) ,

and thus, together with (8.8)

u ∂iv = u div(v · ei) = div(uv · ei)− ⟨∇u, v · ei⟩ = div(uv · ei)− v ∂iu .

Thus by the divergence theorem∫
Ω
u ∂iv =

∫
Ω
div(uv · ei)− v ∂iu = −

∫
Ω
∂iu v +

∫
∂Ω

⟨uv · ei, ν⟩ dA

= −
∫
Ω
∂iu v +

∫
∂Ω
uv νi dA .

Remark 8.3.10: (1) Note that if either u or v vanish on ∂Ω, we obtain

(8.9)

∫
Ω
u ∂iv = −

∫
Ω
∂iu v .

(2) Even without any regularity assumptions on Ω (i.e. no smooth boundary), if say u, v ∈ C1(Ω)
and u vanishes outside a compact set contained in Ω, then by Proposition 8.3.2 we still have that
(8.9) holds.

Definition 8.3.11 (Laplacian). Let U ⊂ Rn be open and u ∈ C2(U). We define the Laplacian of
u at x ∈ U to be

∆u(x) :=

n∑
i=1

∂2i u(x) .

We note that we also alternatively write for x ∈ U

(8.10) ∆u(x) =

n∑
i=1

D2u(ei, ei)(x) = tr ∂2u(x) = div(∇u)(x) ,

where e1, . . . , en is the standard basis of Rn.
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Proposition 8.3.12 (Green’s formulas). Let V ⊂ Rn be open and Ω ⊂ Rn be bounded, open with
smooth boundary and Ω̄ ⊂ V . Assume u, v ∈ C2(V ). Then

(8.11)

∫
Ω
(u∆v + ⟨∇u,∇v⟩) =

∫
∂Ω
u ⟨∇v, ν⟩ dA ,

and

(8.12)

∫
Ω
(u∆v − v∆u) =

∫
∂Ω

(u ⟨∇v, ν⟩ − v ⟨∇u, ν⟩) dA ,

Proof. Using (8.10) and (8.8) we can compute

(8.13) u∆v = u div(∇v) = div(u∇v)− ⟨∇u,∇v⟩ .

Integrating this over Ω and using the divergence theorem yields (8.11). Interchanging u and v in
(8.13) and substracting from (8.13) yields

u∆v − v∆u = div(u∇v)− div(v∇u) .

Again integrating this over Ω and using the divergence theorem yields (8.12).

8.3.3 Tangential line integral and Green’s theorem in the plane

We recall the definition a the unit tangent vector to a regular curve.

Definition 8.3.13 (Unit tangent vector). Let γ : [a, b] → Rn be a regular curve. Then its unit
tangent vector τ(t) is defined to be

τ(t) :=
γ′(t)

∥γ′(t)∥
.

We can use this to define the tangential line integral of a vectorfield along a regular curve.

Definition 8.3.14 (Tangential line integral). Let U ⊂ Rn be open and X ∈ C0(U,Rn). For a
regular curve γ : [a, b] → U we define the tangential line integral of X along γ to be∫

γ
⟨X, τ⟩ ds :=

∫
γ
⟨X ◦ γ, τ⟩ ds =

∫ b

a
⟨X(γ(t)), τ(t)⟩∥γ′(t)∥ dt =

∫ b

a
⟨X(γ(t)), γ′(t)⟩ dt .

We should first check that this definition is invariant under a reparametrisation of γ. Recall that
for a reparametrisation of γ we consider a continuously differentiable function ϕ : [c, d] → [a, b] such
that ϕ(c) = a and ϕ(d) = b and ϕ′(t) > 0 for all t ∈ [c, d]. Then

γ̃ : [c, d] → Rn, t 7→ (γ ◦ ϕ)(t) ,
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is a reparametrisation of γ. Note that

γ̃′ = (γ ◦ ϕ)′ = ϕ′ · (γ′ ◦ ϕ)

and we can compute, using the change of variable formula∫
γ̃
⟨X ◦ γ̃, τ̃⟩ ds =

∫ d

c
⟨X(γ̃(t)), γ̃′(t)⟩ dt =

∫ ϕ(b)

ϕ(a)
⟨X(γ(ϕ(t))), γ′(φ(t))⟩φ′(t)dt

=

∫ b

a
⟨X(γ(t)), γ′(t)⟩ dt =

∫
γ
⟨X ◦ γ, τ⟩ ds ,

and thus indeed the definition is invariant under reparametrisation.

Remark 8.3.15 (Physical interpretation): When the vector field X represents a force, then∫
γ⟨X, τ⟩ ds represents the work done by X while pushing an object along γ.

When γ is a closed curve,
∫
γ⟨X, τ⟩ ds is sometimes referred to as the circulation of X around γ

as it measures the rate at which the quantity described by the vector field X circulates around γ.
The symbol

∮
γ is sometimes used to indicate the fact that γ is closed.

Finally we would like to discuss Green’s theorem in the plane.

Definition 8.3.16 (Curl of a vectorfield). Let U ⊂ R2 be open and X ∈ C1(U,R2) then we define

curlX := ∂1X2 − ∂2X1 .

Remark 8.3.17: Note that if R : R2 → R2 again denotes the clockwise rotation by π/2 then

R(X) = R((X1, X2)) = (X2,−X1)

and we can write
curlX = divR(X) .

Theorem 8.3.18 (Green’s theorem in the plane). Let V ⊂ R2 be open and Ω be open, bounded with
smooth boundary such that Ω ⊂ V . Assume {γ1, . . . , γK} are disjoint, closed, embedded, regular
curves which parametrise ∂Ω, which are oriented in such a way such that Ω locally lies to the left
of γi for i = 1, . . . ,K. Then for any vectorfield X ∈ C1(V,R2) it holds∫

Ω
curlX =

K∑
i=1

∮
γi

⟨X, τ⟩ ds ,

where τ is the unit tangent vector along each γi.
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Proof. From Remark 8.3.17 we have that

curlX = divR(X) ,

and by the divergence theorem in the plane, Theorem 8.3.6∫
Ω
curlX =

∫
Ω
divR(X) =

K∑
i=1

∫
γi

⟨R(X), ν⟩ ds

where ν is the unit outward normal to ∂Ω. Note that since R preserves the scalar product between
two vectors (i.e. ⟨Rv,Rw⟩ =⟩v, w⟩ for all v, w ∈ R2) and R2 = −I we have

⟨R(X), ν⟩ = ⟨R2(X), R(ν)⟩ = ⟨−X,R(ν)⟩ = −⟨X,−τ⟩ = ⟨X, τ⟩ ,

and thus ∫
Ω
curlX =

K∑
i=1

∫
γi

⟨X, τ⟩ ds =
K∑
i=1

∮
γi

⟨X, τ⟩ ds .

Remark 8.3.19 (Physical interpretation): The obvious physical interpretation is that the circu-
lation of X around ∂Ω equals the integral of curlX over Ω.



A Appendix

A.1 Local surjectivity via the contraction mapping principle

We will briefly explain how one can use the contraction mapping principle to obtain local surjectivity
in the proof of the Inverse Function Theorem, Theorem 4.0.4. We use the notation as in the proof
there, and we will give a different proof of

Step 2: f is surjective in a neighborhood around a.

Note that we can replace x 7→ f(x) by x 7→ f(a + x) − f(a). So we can assume a = 0 ∈ Rn and
f(a) = 0. Then (4.4) yields for g(x) = x− f(x)

(A.1) ∥g(x)− g(y)∥ ≤ 1

2
∥x− y∥ ∀x, y ∈ B(0, ε) .

Note that g(0) = 0 and so g(B(0, ε)) ⊂ B(0, ε/2). For y0 ∈ B(0, ε/2) define

gy0(x) := g(x) + y0 .

Note that gy0(B(0, ε)) ⊂ B(0, ε) and thus by continuity gy0(B(0, ε)) ⊂ B(0, ε). Furthermore (A.1)

yields (using again continuity of gy0 for the extension to B(0, ε))

∥gy0(x)− gy0(y)∥ ≤ 1

2
∥x− y∥ ∀x, y ∈ B(0, ε) .

Thus gy0 : B(0, ε) → B(0, ε) is a contraction mapping. Since (B(0, ε), ∥x−y∥) is a complete metric

space, the contraction mapping principle yields that gy0 has a unique fixed point x0 ∈ B(0, ε).
But

gy0(x0) = x0 ⇔ x0 − f(x0) + y0 = x0 ⇔ f(x0) = y0 .

This yields local surjectivity of f .
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