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This is a course in elementary number theory. There’ll be opportuni-
ties to learn more advanced techniques in MA3A6 Algebraic Number The-
ory, MA4L6 Analytic Number Theory, MA426 Elliptic Curves, and MA4H9
Modular Forms.

1 Divisibility and congruences

Recall the set of positive integers

N = {1, 2, . . .}.

The integers form a ring

Z = {0, 1,−1, 2,−2, . . .},

and the rationals form a field

Q = {a/b : a, b ∈ Z, b ̸= 0}.

Given a, b ∈ Z, we say that a divides b, and write a | b, if there exists an
integer c such that ac = b. Alternatively, we say that a is a divisor of b, or
that b is a multiple of a, or that b is divisible by a. We write a ∤ b if a does
not divide b.

Example 1.0.1. We have 2 | 6 and 0 | 0.

Lemma 1.0.2 (Division algorithm, a.k.a. division with remainder). Let
a ∈ N and b ∈ Z. Then there exist unique integers q, r such that

b = qa+ r, 0 ⩽ r < a.

We call q the quotient and r the remainder.

Example 1.0.3. 42 is not a multiple of 10, as there’s a remainder:

42 = 4× 10 + 2.

Proof. For existence, let q = ⌊b/a⌋ be the greatest integer q ⩽ b/a, and put
r = b− aq. Then

b/a− 1 < q ⩽ b/a,
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so
r ⩾ b− ab/a = 0

and
r < b− a(b/a− 1) = a.

For uniqueness, suppose

b = aq + r = aq1 + r1, 0 ⩽ r, r1 < a.

Then a divides r − r1 and |r − r1| < a, whence r = r1 and q = q1.

An integer n > 1 is prime if its only positive divisors are 1 and n, and
composite if it’s not prime. The integer 1 is neither prime nor composite.

Example 1.0.4 (Grothendieck prime). What are the prime divisors of 57?

Sieve of Eratosthenes (algorithm):

1. Write down integers from 2 to N in natural order.

2. Strike out all multiples of 2 (except 2).

3. Find the next remaining number (the one that is not struck out), call
it R.

4. If R ⩽
√
N then strike out all multiples of R (except R) and go to step

3, otherwise stop the algorithm (the remaining numbers in the list are
all the primes ⩽ N).

Example 1.0.5. Let’s use this to list the primes up to 50 (in class).

Theorem 1.0.6 (Euclid, circa 300BC). There are infinitely many primes.

Proof. Assume for a contradiction that p1, . . . , pn are all of the primes. Then

p1 · · · pn + 1

is indivisible by p1, . . . , pn, since the remainder is 1. However, strong induc-
tion assures us that any integer greater than 1 has a prime divisor.
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1.1 Euclid’s algorithm

Given integers a and b, not both zero, we write gcd(a, b) or (a, b) for the
greatest common divisor of a and b.

Example 1.1.1. Very inefficiently: the positive divisors of 12 are 1, 2, 3, 4,
6, 12, so gcd(12, 20) = 4.

Is there an efficient way, especially for large values?

Example 1.1.2. Suppose we want to find gcd(2024, 70). We have

2024 = 28× 70 + 64

70 = 64 + 6

64 = 10× 6 + 4

6 = 4 + 2

4 = 2× 2,

so the GCD is 2.

We may assume that 0 < a ⩽ b, since (0, b) = b.

1. Put a0 = a and b0 = b.

2. Use the division algorithm to find q0, r0 ∈ Z such that b0 = q0a0 + r0
and 0 ⩽ r < a0.

3. If r0 = 0 then gcd(a, b) = a0.

4. If 0 < r0 < a0, then set a1 = r0 and b1 = a0, and repeat the process.

Proof. The ai ∈ Z⩾0 are decreasing, so the algorithm must terminate.
If b = aq + r, then the common divisors of r and a are the same as

the common divisors of a and b, so gcd(r, a) = gcd(a, b). If the algorithm
terminates after i+ 1 steps, then

ai = gcd(0, ai) = gcd(ai, ai−1) = · · · = gcd(a1, a0) = gcd(a, b).
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Euclid’s algorithm is efficient, in that it only takes polynomially many
steps in terms of the input size log a. If one were to test possible divisors
of a, starting from 2 and stopping when one is found, then the time taken
would be exponential. The latter is called trial division. There’s also a
version where only primes are tested for divisibility.

The algorithm can be run backwards to express the GCD as a linear com-
bination of the two numbers. This is called the extended Euclidean algorithm.

Example 1.1.3. We have

2 = 6− 4

= 6− (64− 10× 6) = 11× 6− 64

= 11(70− 64)− 64 = 11× 70− 12× 64

= 11× 70− 12(2024− 28× 70) = 347× 70− 12× 2024.

This gives a practical way to establish the fundamental result below.

Lemma 1.1.4 (Bézout’s lemma). Let a and b be integers, not both zero.
Then there exist x, y ∈ Z such that

ax+ by = gcd(a, b).

Corollary 1.1.5. Let a and b be integers, not both zero, and let d ∈ Z. Then
d divides a and b if and only if d | gcd(a, b).

Proof. If d divides gcd(a, b) then it divides a and b.
Conversely, suppose d divides a and b. For some x, y ∈ Z, we have

gcd(a, b) = ax+ by,

which is divisible by d.

1.2 The fundamental theorem of arithmetic

Lemma 1.2.1 (Euclid’s lemma). Let m,n ∈ Z, and let p be a prime dividing
mn. Then p divides m or n.

Proof. Suppose p ∤ m. Then gcd(p,m) = 1, and Bézout’s lemma furnishes
integers x and y such that

mx+ py = 1.

Now n = n(mx+ py) is divisible by p.
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It’s necessary to assume that p is prime. Can you think of an example to
demonstrate this necessity?

Theorem 1.2.2 (Fundamental theorem of arithmetic). Any positive integer
is uniquely a product of primes.

What’s the prime factorisation of 2024?

Proof. Let n ∈ N. We prove existence by strong induction. For n = 1, we
use the empty product. For n > 1, we may assume that n is composite, so
n = ab for some integers a, b in the range 1 < a, b < n. By our inductive
hypothesis, the integers a and b are products of primes. Thus, so too is n.

For uniqueness, we also use strong induction. If n = 1 is expressed as
a product of primes, then it must be the empty product, since any other
product of primes is at least 2. Now suppose

2 ⩽ n = p1 · · · ps = q1 · · · qt
for some primes p1, . . . , ps and q1, . . . , qt. By Euclid’s lemma, the prime p1
must divide some qj, and therefore must equal qj. By reordering the primes
qj, we may assume that p1 = q1. Now

p2 · · · ps = q2 · · · qt < n,

so by our inductive hypothesis we must have the multiset equality

{{p2, . . . , ps}} = {{q2, . . . , qt}}.

Finally, as p1 = q1, we have

{{p1, . . . , ps}} = {{q1, . . . , qt}}.

The least common multiple of x, y ∈ Z, denoted lcm(x, y) or [x, y], is the
least positive integer that is a multiple of x and y.

Lemma 1.2.3. Let x, y ∈ N. Let p1, . . . , pk be the distinct primes dividing
xy, and let

x = pa11 · · · pakk , y = pb11 · · · pbkk
be the prime factorisations of x and y, respectively. Then

(x, y) =
∏
i⩽k

pmi
i , [x, y] =

∏
i⩽k

pMi
i ,

where mi = min{ai, bi} and Mi = max{ai, bi}.
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Proof. Exercise.

Corollary 1.2.4. If x, y ∈ N then

(x, y)[x, y] = xy.

We can also consider the GCD or LCM of more than two integers. What’s
lcm(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)?

Two (or more) integers are coprime (or relatively prime) if they don’t
have any prime factors in common, i.e. their GCD is 1. By Bézout’s lemma,
this happens if and only if 1 can be expressed as a linear combination of the
two integers. The following two useful lemmas can be proved either using
either this characterisation or the fundamental theorem of arithmetic.

Lemma 1.2.5. If (a,m) = (b,m) = 1 then (ab,m) = 1.

Lemma 1.2.6 (General Euclid lemma). If d | xy and (d, x) = 1 then d | y.

Before moving on, we remark that number theory is sometimes done in
situations where we don’t have unique factorisation into irreducible elements.

Example 1.2.7. Unique factorisation into irreducible elements fails in the
ring Z[

√
−5], since

(1 +
√
−5)(1−

√
−5) = 2× 3.

This is explored further in MA3A6 Algebraic Number Theory.

1.3 Fermat primes, Mersenne primes, and perfect num-
bers

Fermat claimed in a letter to have proved that the numbers

Fk = 22
k

+ 1 (k ⩾ 0)

are all prime. Whilst the first five of these are prime, namely

3, 5, 17, 257, 65537,

it’s since been shown that F5, . . . , F32 are composite. The numbers Fk are
called Fermat numbers, and the prime ones are called Fermat primes.
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For p prime, denoteMp = 2p−1. Primes of this form are called Mersenne
primes. The largest known prime is 282589933 − 1, discovered as part of the
Great Internet Mersenne Prime Search (GIMPS) programme.

The sum-of-divisors function is given by

σ1(n) =
∑
d|n

d,

where the sum is over positive divisors. A positive integer n is perfect if
σ1(n) = 2n.

Example 1.3.1. We have 6 = 3 + 2 + 1, so 6 is perfect.

An arithmetic function is a function N → C. An arithmetic function f is
multiplicative if f(mn) = f(m)f(n) holds for any coprime positive integers
m and n.

Lemma 1.3.2. The sum-of-divisors function is multiplicative.

Proof. Let m,n ∈ N with (m,n) = 1. Then

σ1(mn) =
∑
d|mn

d =
∑
d1|m

∑
d2|n

d1d2 = σ1(m)σ1(n).

Example 1.3.3. LetMp = 2p−1 be a Mersenne prime, and put n = 2p−1Mp.
Then

σ1(n) = σ1(2
p−1)σ1(Mp) = (2p − 1)2p = 2n,

so n is perfect.

Theorem 1.3.4 (Euclid–Euler theorem). If n ∈ N is even then n is perfect
if and only if

n = 2p−1Mp,

where Mp = 2p − 1 is a Mersenne prime.

The proof is elementary, but let’s move on. A famous open problem asks
if there are any odd perfect numbers.
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1.4 Congruences (modular arithmetic)

Let m ∈ N. We say that integers x and y are congruent modulo m, and write
x ≡ y mod m, if m divides x− y.

Example 1.4.1. Modular arithmetic is like going around a clock. 1700 hours
is 5pm, because 17 ≡ 5 mod 12.

Another way to think about it is that numbers are congruent modulo m
if they leave the same remainder when divided by m. It’s easy to check that
this is an equivalence relation on Z. The integers can thus be partitioned
into congruence classes r+mZ, where 0 ⩽ r < m. These congruence classes
form the quotient ring Z/mZ, which we’ll soon discuss further.

Example 1.4.2. Modulo 10 is taking the last digit: 2024 ≡ 4 mod 10.

Lemma 1.4.3 (Congruences respect addition and multiplication). Let m ∈
N. Let a, b, α, β be integers such that

a ≡ α mod m, b ≡ β mod m.

Then
a+ b ≡ α + β mod m, ab ≡ αβ mod m.

Thus, if f(x, y) ∈ Z[x, y], then

f(a, b) ≡ f(α, β) mod m.

Proof. Exercise.

Lemma 1.4.4 (Cancellation with congruences). Let m ∈ N, and let a, x, y ∈
N with

ax ≡ ay mod m.

(a) If a | m then
x ≡ y mod m/a.

(b) If (a,m) = 1 then
x ≡ y mod m.

Proof. (a) We have a(x− y) = cm for some c ∈ Z, so x− y = cm/a, whence
x ≡ y mod m/a.
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(b) As m divides a(x− y) and (a,m) = 1, the general Euclid lemma tells us
that m divides x− y, so x ≡ y mod m.

Example 1.4.5.

4x ≡ 4y mod 6

⇔ 2x ≡ 2y mod 3

⇔ x ≡ y mod 3.

Before proceeding further, we demonstrate some modular obstructions to
the solubility of diophantine equations (equations where we look for integer
solutions).

Lemma 1.4.6. Squares are 0 or 1 modulo 4.

Proof.

x x2 mod 4
0 0
1 1
2 0
3 1

Corollary 1.4.7. One cannot express 2023 as a sum of two squares.

We can’t write 2023 as a sum of three squares either.

Lemma 1.4.8. Let n be a positive integer of the form n = 4km, where k ⩾ 0
and m ≡ 7 mod 8. Then n is not a sum of three squares.

Proof. By checking 0,1,2,3,4,5,6,7, we find that squares are 0,1, or 4 modulo
8. Thus, three squares cannot sum to 7 modulo 8, which solves the k = 0
case.

We now induct on k. Let k ⩾ 1, and assume the result for smaller values
of k. Suppose for a contradiction that

x2 + y2 + z2 = 4km,

for some x, y, z ∈ Z. Then x2 + y2 + z2 ≡ 0 mod 4. This is only possible for
x, y, z are all even, since x2 is 0 mod 4 if x is even and 1 mod 4 if x is odd.
Writing

x = 2u, y = 2v, z = 2w
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yields
u2 + v2 + w2 = 4k−1m,

contradicting our inductive hypothesis.

The proof above is an example of infinite descent, where any triple (x, y, z)
with the property of interest produces a smaller such triple. As an exercise,
show that if x, y, z are integers, not all zero, then x2 + y2 ̸= 3z2.

1.5 Linear congruences

Letm ∈ N. We say that 0, 1, . . . ,m−1 form a complete set of residues modulo
m, because they have exactly one representative from each congruence class.
The ring Z/mZ is {0, 1, . . . ,m−1} equipped with addition and multiplication
modulo m. It’s easy to check that this is a commutative ring.

Example 1.5.1 (Associativity). Let a, b, c ∈ {0, 1, . . . ,m− 1}. Write

ab = q1m+ r1, bc = q2m+ r2

with 0 ⩽ r1, r2 < m. Then

r1c ≡ abc ≡ ar2 mod m,

whence (ab)c = a(bc) ∈ Z/mZ.

Next, we study the multiplicative group of units (invertible elements)
modulo m, which we denote by (Z/mZ)×.

Lemma 1.5.2. Let m ∈ N and a ∈ Z. Then a is invertible modulo m if and
only if gcd(a,m) = 1.

Example 1.5.3. We have (Z/6Z)× = {1, 5} mod 6.

Proof. The integer a is invertible modulo m if and only if there exist x, y ∈ Z
such that ax+my = 1. By Bézout’s lemma, such integers exist if (a,m) = 1,
and conversely if such integers exist then a,m must be coprime.

Hence (Z/mZ)× comprises the coprime residue classes modulo m. The
Euler totient function φ counts the number of coprime residue classes:

φ(m) = #{a ∈ {1, 2, . . . ,m} : gcd(a,m) = 1}.

Therefore |(Z/mZ)×| = φ(m).
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Example 1.5.4. We have φ(6) = 2.

We’ll later deduce a nice formula for φ(m), which is also referred to as
the Euler phi function.

Lemma 1.5.5. If p is prime, then Z/pZ is a field, and

(Z/pZ)× = {1, 2, . . . , p− 1} mod p

has order φ(p) = p− 1.

Proof. It’s a commutative ring, and any non-zero element is invertible (being
coprime to the modulus).

We also denote this by Fp. Note that if m is composite then Z/mZ isn’t
a field, since any prime divisor of m is non-invertible. Let’s also practise
finding inverses.

Example 1.5.6. We have

12 ≡ 2× 4 ≡ 3× 5 ≡ 62 ≡ 1 mod 7.

Mod 13 (card game):

1. Each player is dealt a hand of cards, interpreted as residue classes
modulo 13 (J = 11, Q = 12, K = 13), and two cards a1, a2 are placed
into the centre.

2. Racing, a player can play either the a1 + a2 (sum), a1a2 (product),
2a2−a1 (AP = arithmetic progression) or a22a

−1
1 (GP = geometric pro-

gression) as the card a3, declaring which type of move they’ve played.

3. Play continues with cards a2 and a3 in place of a1 and a2, and so on,
until somebody finishes and wins.

Example 1.5.7. GP: 7, J, and...? We have

11 ≡ 24 ≡ 4(−7) ≡ 9× 7 mod 13,

so the next card is
9× 11 ≡ 8.
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We can determine all solutions to a given linear congruence using our
knowledge of inverses.

Lemma 1.5.8 (Solving a linear congruence). Let a, b ∈ Z and m ∈ N. Then:

(a) There exists x ∈ Z solving ax ≡ b mod m if and only if gcd(a,m) | b.

(b) If gcd(a,m) | b, and x0 ∈ Z is a solution to ax0 ≡ b mod m, then all
solutions are given by

x0 +
tm

gcd(a,m)
(t ∈ Z).

Proof. Put
g = gcd(a,m), a = ga′, m = gm′,

so that (a′,m′) = 1.

(a) If x ∈ Z and ax ≡ b mod m then b ≡ ax ≡ 0 mod g.

Conversely, if g | b then, writing b = gb′, our congruence becomes

a′x ≡ b′ mod m′.

This has a solution because (a′,m′) = 1. It’s given by b′ times the inverse
of a′ modulo m′.

(b) If t ∈ Z and x = x0 + tm/g then

ax ≡ b+ atm/g ≡ b mod m.

It remains to show that there aren’t any other solutions.

If x solves the congruence then

a′x ≡ b′ ≡ a′x0 mod m′,

so m′ divides x−x0 by the general Euclid lemma. Therefore x = x0+tm
′

for some t ∈ Z.
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Example 1.5.9. Let’s find all x ∈ Z such that 100x ≡ 26 mod 82. We
rewrite this as

50x ≡ 13 mod 41,

then as
9x ≡ 13 mod 41.

All solutions will be gotten from one solution (the unique solution modulo
41 is 13 times the inverse of 9). Since 9 and 41 are coprime, we can express
1 as a linear combination of them using the extended Euclidean algorithm:

41 = 4× 9 + 5

9 = 5 + 4

5 = 4 + 1,

so

1 = 5− 4

= 5− (9− 5) = 2× 5− 9

= 2(41− 4× 9)− 9

= 2× 41− 9× 9.

Now
13 = 26× 41− 117× 9,

so −117 is a solution to the congruence, and so too is 3×41−117 = 6. Thus,
all solutions are given by

x = 6 + 41t (t ∈ Z).

We saw how to solve a single linear congruence. The Chinese remainder
theorem enables us to solve a system of linear congruences with pairwise
coprime moduli.

Theorem 1.5.10 (Classical Chinese remainder theorem). Let m1, . . . ,mK ∈
N be pairwise coprime, and let a1, . . . , aK ∈ Z. Then there exists x ∈ Z,
unique modulo

∏
kmk, such that

x ≡ ak mod mk (1 ⩽ k ⩽ K).

This is given by
∑

i aiMiyi, where Mi =
∏

j ̸=imj and Miyi ≡ 1 mod mi.
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Proof. For existence, observe that for each k we have∑
i

aiMiyi ≡ akMkyk ≡ ak mod mk.

For uniqueness, observe that if x, y are solutions then x − y is divisible by
m1, . . . ,mK . As themi are pairwise coprime, it follows from the fundamental
theorem of arithmetic that m1 · · ·mK divides x− y.

Example 1.5.11. Consider the simultaneous congruences

x ≡ 1 mod 3, x ≡ 2 mod 5, x ≡ 3 mod 7.

The general solution is

x = x0 + 105t (t ∈ Z),

where
x0 =M1y1 + 2M2y2 + 3M3y3.

Here
M1 = 35, M2 = 21, M3 = 15

and
35y1 ≡ 1 mod 3, 21y2 ≡ 1 mod 5, 15y3 ≡ 1 mod 7.

Hence
2y1 ≡ 1 mod 3, y2 ≡ 1 mod 5, y3 ≡ 1 mod 7,

so y1 ≡ −1 mod 3 and finally

x0 = −35 + 2× 21 + 3× 15 = −35 + 42 + 45 = 52.

All solutions are therefore given by x = 52 + 105t, for t ∈ Z.
There was a clever way to find this from the beginning. Can you spot it?

There’s also a version to do with finite groups.

Example 1.5.12. Since 3 ∤ 5, how does Z/3Z×Z/5Z fit into the classification
of finite abelian groups? Recall that this asserts that any finite abelian group
is isomorphic to some

∏
k⩽K Z/dkZ, where d1 | d2 | · · · | dK .
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A ring homomorphism is a function between rings f : R → S such that
f(1) = 1 and

f(x+ y) = f(x) + f(y), f(xy) = f(x)f(y) (x, y ∈ R).

As an exercise, show that f(0) = 0.

Example 1.5.13. Reducing modulom is a ring homomorphism Z → Z/mZ.

If f is a bijective ring homomorphism, then its inverse is a ring homo-
morphism, and we call f a ring isomorphism.

Theorem 1.5.14 (Algebraic Chinese remainder theorem). Letm1, . . . ,mK ∈
N be pairwise coprime, and put M =

∏
kmk. Then

ψ : Z/MZ → Z/m1Z× · · · × Z/mKZ
x 7→ (x mod m1, . . . , x mod mK)

is a ring isomorphism. Moreover, it restricts to a group isomorphism

(Z/MZ)× → (Z/m1Z)× × · · · × (Z/mKZ)×.

Proof. Well-defined: if x ∈ Z then

x+M ≡ x mod mk (1 ⩽ k ⩽ K).

We saw that modular arithmetic respects addition and multiplication, so ψ
is a ring homomorphism. The classical Chinese remainder theorem defines
an inverse function, so ψ is bijective and is therefore an isomorphism.

For the second part, note that x ∈ Z/MZ is coprime to M if and only if
it’s coprime to each mk. Therefore ψ restricts to a bijection

(Z/MZ)× → (Z/m1Z)× × · · · × (Z/mKZ)×.

This is a group homomorphism because ψ is a ring homomorphism. Hence
it’s a group isomorphism.

Recall that an arithmetic function is a function N → C, and that an
arithmetic function f is multiplicative if f(mn) = f(m)f(n) holds for any
coprime positive integers m and n.

Corollary 1.5.15. Euler’s totient function is multiplicative.
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Proof. Apply the algebraic CRT with K = 2.

Lemma 1.5.16. For n ∈ N, we have

φ(n) = n
∏
p|n

(
1− 1

p

)
,

where the product is over primes dividing n.

Proof. Observe that φ(1) = 1. Next, suppose n = pk, for some prime p and
some k ∈ N. Then φ(n) is the number of residue classes that aren’t divisible
by p, which is

pk − pk−1 = pk(1− 1/p).

Finally, suppose n = pk11 · · · pkrr , where the pi are pairwise distinct primes and
the ki are positive integers. Then

φ(n) =
∏
i⩽r

φ(pki) =
∏
i⩽r

pki
(
1− 1

pi

)
= n

∏
p|n

(
1− 1

p

)
.

Example 1.5.17. We have

φ(20) = 20(1− 1/2)(1− 1/5) = 10× 4/5 = 8.

Here’s another nice property, which is sometimes used in analytic number
theory. The proof is instructive: to show that two multiplicative functions
are equal, it suffices to compare them at prime powers.

Lemma 1.5.18 (Totient function identity). For n ∈ N, we have∑
d|n

φ(d) = n,

where the sum is over the positive divisors of n.

Proof. We proceed in two steps. First, we show that the arithmetic function

f(n) =
∑
d|n

φ(d)
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is multiplicative. Letm and n be coprime positive integers. Then the positive
divisors of mn are the numbers of the form de, where d, e are positive divisors
of m,n respectively, and moreover (d, e) = 1 here. Thus

f(mn) =
∑
d|m

∑
e|n

φ(de) =
∑
d|m

∑
e|n

φ(d)φ(e) = f(m)f(n),

so f is indeed multiplicative.
It remains to prove that f(pk) = pk for any prime power pk. We compute

that

f(pk) =
k∑

j=0

φ(pj) = 1 + (p− 1) + (p2 − p) + · · ·+ (pk − pk−1) = pk.

1.6 Standard congruences

Example 1.6.1 (Fast powering). Let’s compute 2200 mod 13. We have

200 = 128 + 64 + 8.

t 2t mod 13
4 3
8 9
16 3
32 9
64 3
128 9

Using our table, we have

2200 = 212826428 ≡ 9× 3× 9 ≡ 9 mod 13.

Theorem 1.6.2 (Euler’s theorem, 1760). Let m ∈ N, and let a ∈ Z be
coprime to m. Then

aφ(m) ≡ 1 mod m.
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Proof. Reducing modulo m, we have x := ā ∈ (Z/mZ)×. By Lagrange’s
theorem, its order k divides the order of the group, whence

xφ(m) = (xk)φ(m)/k = 1.

Example 1.6.3. We have 340 ≡ 1 mod 100. What about 240?

Corollary 1.6.4 (Fermat’s little theorem, 1640). Let p be prime, and let
a ∈ Z.

(a) If p ∤ a then ap−1 ≡ 1 mod p.

(b) We have ap ≡ a mod p.

Proof. (a) Apply Euler’s theorem.

(b) If p ∤ a, then apply (a) and multiply both sides by a. If p | a, then both
sides are zero.

It follows that if (a, n) = 1 and an−1 ̸≡ 1 mod n then n is composite. The
converse, however, is false. A Carmichael number is a composite number
n such that if a ∈ Z and (a, n) = 1 then an−1 ≡ 1 mod n. The smallest
Carmichael number is 561 = 3× 11× 17.

Example 1.6.5. Suppose x is coprime to 561. Then

x560 = (x2)280 ≡ 1 mod 3,

x560 = (x10)56 ≡ 1 mod 11,

x560 = (x16)35 ≡ 1 mod 17,

by Fermat, so CRT gives x560 ≡ 1 mod 561.

The example above motivates a general criterion that we state below but
won’t formally prove. An integer is squarefree if it isn’t divisible by the
square of any prime.

Theorem 1.6.6 (Korselt, 1899). A composite number n is Carmichael if and
only if it’s squarefree and, for every prime p | n, we have (p− 1) | (n− 1).
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Example 1.6.7. As 2, 10, and 16 divide 560, we see that 561 = 3× 11× 17
is Carmichael.

There are infinitely many Carmichael numbers, but they’re much rarer
than primes. Thus, if n ∈ N satisfies an−1 ≡ 1 mod n whenever (a, n) = 1,
then it’s very likely to be prime!

Before we come to Wilson’s theorem, we require some information about
roots of polynomials.

Lemma 1.6.8 (General roots lemma). Let p be prime, and let f(x) ∈ Fp[x]
be a non-zero polynomial of degree d. Then f has at most d roots in Fp.

Proof. This is clear for d = 0, so let’s assume that f(α) = 0 for some
α ∈ Fp and induct on the degree. By polynomial long division, we can
find q(x) ∈ Fp[x] and r ∈ Fp such that

f(x) = (x− α)q(x) + r, deg(q) = d− 1.

Substituting x = α yields r = 0, so f(x) = (x− α)q(x). If β ̸= α is a root of
f , then it’s a root of q. By our inductive hypothesis, the polynomial q has
at most d− 1 roots in Fp, so f has at most d roots.

In full generality, polynomial long division uses coefficients in a field, e.g.
one can’t divide x2 by 2x with remainder over the integers. However, when
dividing by a monic polynomial, polynomial long division can be done over
any commutative ring.

Example 1.6.9. When dividing x5 + 3 by x2 + 3 over Z (i.e. in Z[x]), the
quotient is x3 − 3x and the remainder is 9x+3 (done in class by polynomial
long division).

An integral domain is a commutative ring such that if xy = 0 then x = 0
or y = 0.

Lemma 1.6.10. Any subring of a field is an integral domain.

Proof. Let R be a subring of a field, and let x, y ∈ R with x ̸= 0 and xy = 0.
Then

y = x−10 = 0.
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Lemma 1.6.8 holds over any integral domain, with the same proof. The
ring Z/mZ is only an integral domain if m is prime.

Example 1.6.11. In Z/6Z, the quadratic polynomial (x−2)(x−3) = x(x−5)
has four roots.

Theorem 1.6.12 (Wilson’s theorem). If p is prime then

(p− 1)! ≡ −1 mod p.

Proof. The polynomials

xp−1 − 1, (x− 1)(x− 2) · · · (x− p+ 1)

agree at x = 1, 2, . . . , p− 1, by Fermat’s little theorem. Their difference has
at least p − 1 roots and degree at most p − 2, so it must vanish identically.
Thus

xp−1 − 1 ≡ (x− 1)(x− 2) · · · (x− p+ 1) mod p

for all x ∈ Z, and specialising x = 0 gives

−1 ≡ (−1)p−1(p− 1)! ≡ (p− 1)! mod p.

If n ̸= 4 is composite, then it’s not too hard to show that

(n− 1)! ≡ 0 mod n.

The upshot is that Wilson’s theorem is a valid test of primality, albeit not a
very practical one.

1.7 Primitive roots

We now examine the structure of the group (Z/mZ)× of units modulo m. By
the Chinese remainder theorem, it suffices to consider prime power moduli.

Let m ∈ N, and let a ∈ Z be coprime to m. The order of a modulo m,
denoted ordm(a), is the least k ∈ N such that ak ≡ 1 mod m. In other words,
it’s the order of a ∈ (Z/mZ)×.

Lemma 1.7.1 (Order lemma). Let m ∈ N, and let a ∈ Z be coprime to m.
Then:
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(a) If k ∈ N then ak ≡ 1 mod m if and only if ordm(a) | k.

(b) We have ordm(a) | φ(m).

(c) For u ∈ N, we have

ordm(a
u) =

ordm(a)

(u, ordm(a))
.

Proof. (a) This is a special case of the result for finite groups. Reprove it as
an exercise.

(b) Apply Euler’s theorem and (a).

(c) Write

x = ordm(a), g = gcd(u, x), x = gx′, u = gu′,

so that (x′, u′) = 1. Observe that ordm(a
u) is the least k ∈ N such that

aku ≡ 1 mod m, which is the least k for which x | ku. This is the least
k such that x′ | ku′, whence

ordm(a
u) = x′ =

x

g
=

ordm(a)

(u, ordm(a))
.

Given m ∈ N, a primitive root modulo m is a ∈ Z such that ordm(a) =
φ(m). Equivalently, the integer a is a primitive root if it generates (Z/mZ)×,
i.e.

(Z/mZ)× = {1, a, a2, . . . , aφ(m)−1}.

What’s a primitive root modulo 7?
If g is a primitive root modulo m, then any element of (Z/mZ)× can be

written as gt, for some unique t ∈ {0, 1, . . . , φ(m) − 1}. There’s a primitive
root modulo m if and only if (Z/mZ)× is cyclic. For which m does this
happen? Try it out for m ⩽ 9. It’s easy to be cyclic if you’re small! We’ll
see that there usually isn’t a primitive root.

Theorem 1.7.2. If p is prime then there are precisely φ(p − 1) primitive
roots modulo p.
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Proof. For d ∈ N dividing p− 1, write

A(d) = {x ∈ (Z/pZ)× : ordp(x) = d}, f(d) = |A(d)|.

Observe that ∑
d|(p−1)

f(d) = p− 1 =
∑

d|(p−1)

φ(d),

wherein we’ve used the order lemma and the totient function identity. We
show, a fortiori, that f(d) = φ(d) for all d | (p − 1). By our observation, it
suffices to prove that f(d) ⩽ φ(d) for all d | (p − 1), and in particular we
may assume that f(d) > 0.

Let d ∈ N divide p− 1 with f(d) > 0, and let a ∈ A(d). Then

1, a, a2, . . . , ad−1

are distinct solutions to xd ≡ 1 mod p, and by the general roots lemma they
must be all of the solutions. Now

f(d) = #{t ∈ {0, 1, . . . , d− 1} : ordp(a
t) = d}} = φ(d),

by the order lemma.

If g is a primitive root modulo p, then any element of (Z/pZ)× can be
written as gt, for some unique t ∈ {1, 2, . . . , p− 1}.

Example 1.7.3. Let’s now prove Wilson’s theorem using a primitive root
g mod p. We can assume that p is odd. By Fermat’s little theorem, we have

(p− 1)! ≡ g1+2+···+(p−1) ≡ (g(p−1)/2)p ≡ g(p−1)/2 ≡ −1 mod p.

Lemma 1.7.4. Let g be a primitive root modulo an odd prime p, and let
t ∈ N. Then gt is a primitive root modulo p if and only if (t, p− 1) = 1.

Proof. The order lemma gives

ordp(g
t) =

ordp(g)

(t, ordp(g))
=

p− 1

(t, p− 1)
.

Conjecture 1.7.5 (Artin’s conjecture on primitive roots, 1927). Let g ̸= −1
be a non-square integer. Then there are infinitely many primes p for which
g is a primitive root.
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Let’s now return to our question of which groups (Z/mZ)× are cyclic.
We require some preparatory lemmas.

Lemma 1.7.6. Let p be prime, and let t < p be a positive integer. Then(
p

t

)
≡ 0 mod p.

Proof. We have (
p

t

)
=

p!

t!(p− t)!
≡ 0 mod p.

Lemma 1.7.7 (Power-up lemma). Let p be a prime, and let k ∈ N. Then

a ≡ b mod pk ⇒ ap ≡ bp mod pk+1.

Proof. For some c ∈ Z, we have a = b+ cpk. The binomial theorem gives

ap = bp + (cpk)p +

p−1∑
t=1

(
p

t

)
bt(cpk)p−t ≡ bp mod pk+1.

Corollary 1.7.8. Let p be an odd prime, and let k ⩾ 2 be an integer. Then

(1 + ap)p
k−2 ≡ 1 + apk−1 mod pk (a ∈ Z).

Proof. This is clear if k = 2, so let’s assume the the congruence for a specific
value of k ⩾ 2 and prove it with k + 1 in place of k. Inserting the inductive
hypothesis into the power-up lemma gives

(1 + ap)p
k−1

= ((1 + ap)p
k−2

)p ≡ (1 + apk−1)p mod pk+1.

The binomial theorem now yields

(1 + ap)p
k−1 ≡ 1 + apk mod pk+1,

completing the induction.

Corollary 1.7.9. Let p be an odd prime, let k ∈ N, and let a ∈ Z with p ∤ a.
Then ordpk(1 + ap) = pk−1.
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Proof. Clearly we may assume that k ⩾ 2. Then

(1 + ap)p
k−1 ≡ (1 + apk−1)p ≡ 1 mod pk,

so the order divides pk−1. It must be exactly pk−1, since

(1 + ap)p
k−2 ≡ 1 + apk−1 ̸≡ 1 mod pk.

Theorem 1.7.10. Let p be an odd prime, and let k ∈ N. Then:

(a) There exists a primitive root g ∈ Z modulo p such that gp−1 ̸≡ 1 mod p2.

(b) Any such g is a primitive root modulo pk.

Proof. (a) We know that there’s a primitive root g modulo p. If gp−1 ≡
1 mod p2, then

(g + p)p−1 ≡ 1 + (p− 1)gp−2p ̸≡ 1 mod p2.

(b) Let n = ordpk(g). By the order lemma, we have n | φ(pk), so it suffices to
prove that φ(pk) | n. As gp−1 = 1+ ap with p ∤ a, we have ordpk(g

p−1) =
pk−1 by the previous result. Since (gp−1)n = (gn)p−1 ≡ 1 mod pk, the
order lemma gives pk−1 | n. As g is a primitive root modulo p, we also
have (p−1) | n. Since pk and p−1 are coprime, we see that n is divisible
by pk−1(p− 1) = φ(pk).

Example 1.7.11. As 2 is a primitive root modulo 3, and 22 ̸≡ 1 mod 9, we
see that 2 is a primitive root modulo 3k for any k ⩾ 2.

We saw that (Z/2kZ)× is trivial for k = 1, and cyclic of order 2 for k = 2.
What happens modulo 4 and 8?

Theorem 1.7.12. Let k ⩾ 3 be an integer. Then

(Z/2kZ)× = {(−1)a5b : a ∈ {0, 1}, b ∈ {0, 1, . . . , 2k−2 − 1}} mod 2k

≃ C2 × C2k−2 .
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Example 1.7.13.

b 5b mod 16 −5b mod 16
0 1 15
1 5 11
2 9 7
3 13 3

Proof. We show by induction that

52
k−3 ≡ 1 + 2k−1 mod 2k.

This holds for k = 3, so let’s now assume it for a specific value of k ⩾ 3 and
prove it with k + 1 in place of k. Inserting the inductive hypothesis into the
power-up lemma gives

52
k−2 ≡ (1 + 2k−1)2 ≡ 1 + 2k mod 2k+1,

completing the induction. Now we also have

52
k−2 ≡ 1 mod 2k,

so ord2k(5) = 2k−2.
We need to show that the numbers (−1)a5b are incongruent modulo 2k.

Let a, a′, b, b′ ∈ Z with

0 ⩽ a ⩽ a′ ⩽ 1, 0 ⩽ b ⩽ b′ ⩽ 2k−2 − 1

and
(−1)a5b ≡ (−1)a

′
5b

′
mod 2k.

Then
(−1)a ≡ (−1)a

′
mod 4,

so a ≡ a′ mod 2, so a = a′. Now

5b
′−b ≡ 1 mod 2k,

so b ≡ b′ mod 2k−2, whence b = b′.

Using the algebraic Chinese remainder theorem to combine our structural
results about the groups (Z/pkZ)× for p prime and k ∈ N, we reach a full
classification of which moduli have primitive roots.

Theorem 1.7.14. Let m ⩾ 2 be an integer. If m = 2, or m = 4, or m = pk

with p an odd prime and k ∈ N, or m = 2pk with p an odd prime and k ∈ N,
then there’s a primitive root modulo m. Otherwise, there isn’t.
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1.8 Quadratic residues

Given m ∈ N, an integer a is a quadratic residue modulo m if there exists
x ∈ Z such that x2 ≡ a mod m. Otherwise, it’s a quadratic non-residue.

Lemma 1.8.1 (Square roots lemma). Let p be an odd prime, and let a ∈ Z
with p ∤ a. Then:

(a) The number of x ∈ (Z/pZ)× such that x2 ≡ a mod p is either 2 or 0.

(b) There are (p − 1)/2 quadratic residues and (p − 1)/2 quadratic non-
residues in (Z/pZ)×.

Proof. (a) If x2 ≡ a mod p then (−x)2 ≡ a mod p, and −x ̸≡ x mod p
because p is odd and p ∤ x. Thus, it’s impossible for there to be exactly
one solution, and, by the general roots lemma, there can’t be more than
two solutions.

(b) By (a), there’s a two-to-one function from (Z/pZ)× to its squares. The
image of this function has size (p− 1)/2.

For p an odd prime and a ∈ Z, the Legendre symbol is given by

(
a

p

)
=


0, if p | a,
−1, if a is a quadratic non-residue mod p

1, if p ∤ a and a is a quadratic residue mod p.

Example 1.8.2. Let’s check out the case p = 5.

x 0 1 2 3 4(
x
5

)
0 1 -1 -1 1

Remark 1.8.3. The Legendre symbol generalises to the Jacobi symbol,
which in turn generalises to the Kronecker symbol. The Legendre symbol
also generalises to the power residue symbols. We won’t use any of these
generalisations. If you do, then please handle them with care. Note in par-
ticular that if m is composite and a ∈ Z then

(
a
m

)
= 1 does not mean that

a is a quadratic residue modulo m.

Theorem 1.8.4 (Euler’s criterion). Let p be an odd prime, and let a ∈ Z
with p ∤ a. Then (

a

p

)
≡ a(p−1)/2 mod p.
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Proof. By Wilson’s theorem, we have (p − 1)! ≡ −1 mod p, so it suffices to
prove that

(p− 1)! ≡ −
(
a

p

)
a(p−1)/2 mod p.

First suppose
(

a
p

)
= 1, and let x ∈ {1, 2, . . . , p − 1} be an integer such

that x2 ≡ a mod p. Then

x(p− x) ≡ −x2 ≡ −a mod p,

so

(p− 1)! ≡ −a
p−1∏
j=1

j /∈{x,p−x}

j mod p.

We know from the squares roots lemma that the congruence z2 ≡ a mod p
has precisely two solutions modulo p given by z = x and z = p− x, so each
j in the product can be paired with y ̸= j such that jy ≡ a mod p. There
are (p− 3)/2 such pairs, so

(p− 1)! ≡ −aa(p−3)/2 ≡ −a(p−1)/2 mod p.

If a is a quadratic non-residue, then we get (p− 1)/2 pairs and so

(p− 1)! ≡ a(p−1)/2 mod p.

Either way, we have

(p− 1)! ≡ −
(
a

p

)
a(p−1)/2 mod p,

completing the proof.

Corollary 1.8.5. Let p be an odd prime, and let a, b ∈ Z. Then(
ab

p

)
=

(
a

p

)(
b

p

)
.

To compute any Legendre symbol
(

a
p

)
, it suffices to handle the special

cases in which a = −1, a = 2, or a is an odd prime. We’ll use quadratic
reciprocity to deal with the case in which a is an odd prime. First, let’s
discuss the other cases. We already know about the case a = −1, from
Euler’s criterion.

27



Corollary 1.8.6 (First supplement to quadratic reciprocity). Let p be an
odd prime. Then (

−1

p

)
=

{
1, if p ≡ 1 mod 4

−1, if p ≡ 3 mod 4.

For the case a = 2, we’ll use Gauss’s lemma in number theory.

Lemma 1.8.7 (Gauss’s lemma). Let p be an odd prime, and let a ∈ Z with
p ∤ a. Denote by µ = µ(a, p) the number elements of{

a, 2a, . . . ,
p− 1

2
a

}
that lie in {

−1,−2, . . . ,
1− p

2

}
mod p.

Then (
a

p

)
= (−1)µ.

Proof. Let j and k be distinct elements of {1, 2, . . . , p−1
2
}. By Euclid’s lemma

and the observation that 1 ⩽ j + k ⩽ p − 1, we have p ∤ (ja ± ka). We can
reduce these elements ja modulo p so that they are non-zero integers in the
range [(1−p)/2, (p−1)/2], and their absolute values are then distinct. Thus,
these absolute values are 1, 2, . . . , (p−1)/2, and µ of them come with a minus
sign. Therefore

(−1)µ
∏

j⩽ p−1
2

j ≡
∏

j⩽ p−1
2

(aj) ≡ a(p−1)/2
∏

j⩽ p−1
2

j mod p.

Finally, as the product is invertible modulo p, we have

(−1)µ ≡ a(p−1)/2 mod p,

and Euler’s criterion tells us that the right hand side is
(

a
p

)
mod p.

Corollary 1.8.8 (Second supplement to quadratic reciprocity). Let p be an
odd prime. Then (

2

p

)
=

{
1, if p ≡ ±1 mod 8

−1, if p± 3 mod 8.
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Example 1.8.9. As 23 ≡ −1 mod 8, we see that 2 is a quadratic residue
modulo 23. Can you see this more explicitly?

Proof. Specialising a = 2 in Gauss’s lemma gives(
2

p

)
= (−1)µ,

where µ counts elements of

{2, 4, 6, . . . , p− 1}

that lie in {
p+ 1

2
, . . . , p− 1

}
.

These are given by p− 1− 2j, where

0 ⩽ j ⩽
p− 3

4
,

so

µ =

⌊
p+ 1

4

⌋
.

If p ≡ ±1 mod 8 then µ is even, and otherwise it’s odd.

Lemma 1.8.10 (Odd variant of Gauss’s lemma). Let p be an odd prime,
and let a ∈ Z be odd with p ∤ a. Then(

a

p

)
= (−1)

∑
j⩽(p−1)/2⌊ja/p⌋.

Proof. Denote by J the set of positive integers j ⩽ p−1
2

such that ja lies in{
−1,−2, . . . ,

1− p

2

}
mod p.

By Gauss’s lemma, we have(
a

p

)
= (−1)µ, µ = #J.
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Observe that if j ⩽ p−1
2

is a positive integer then

ja− p

⌊
ja

p

⌋
− p1J(j)

lies between 1−p
2

and p−1
2
, and is congruent to ja modulo p.

We saw in the proof of Gauss’s lemma that these numbers are, up to sign,
the numbers 1, 2, . . . , p−1

2
in some order. Signs don’t affect parity, so∑

j⩽ p−1
2

(
ja− p

⌊
ja

p

⌋
− p1J(j)

)
≡
∑

j⩽ p−1
2

j ≡ 1

2

p− 1

2

p+ 1

2
≡ p2 − 1

8
mod 2.

On the other hand, direct computation yields∑
j⩽ p−1

2

(
ja− p

⌊
ja

p

⌋
− p1J(j)

)
= a

∑
j⩽ p−1

2

j − p
∑

j⩽ p−1
2

⌊
ja

p

⌋
− pµ

=
a(p2 − 1)

8
− p

∑
j⩽ p−1

2

⌊
ja

p

⌋
− pµ.

As a, p are odd, and odd squares are 1 mod 8, we obtain

p
∑

j⩽ p−1
2

⌊
ja

p

⌋
≡ pµ+

(a− 1)(p2 − 1)

8
≡ pµ mod 2,

whence

µ ≡
∑

j⩽ p−1
2

⌊
ja

p

⌋
mod 2.

Therefore (
a

p

)
= (−1)µ = (−1)

∑
j⩽ p−1

2
⌊ ja

p ⌋.

We come to our main result about quadratic residues.

Theorem 1.8.11 (Law of quadratic reciprocity, Gauss, 1796). Let p ̸= q be
odd primes. Then (

q

p

)
= (−1)(p−1)(q−1)/4

(
p

q

)
.
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In other words, if p and q are distinct odd primes, then

(
q

p

)
=

−
(

p
q

)
, if p ≡ q ≡ 3 mod 4(

p
q

)
, otherwise.

Proof. Let

N =
(p− 1)(q − 1)

4

be the number of pairs (x, y) ∈ N2 such that x ⩽ p/2 and y ⩽ q/2. Then
N = N1+N2, where N1 counts those pairs for which y < qx/p and N2 counts
those pairs for which y > qx/p. We have

N1 =
∑

x⩽ p−1
2

⌊
qx

p

⌋
, N2 =

∑
y⩽ q−1

2

⌊
py

q

⌋
,

so ∑
x⩽ p−1

2

⌊
qx

p

⌋
+
∑

y⩽ q−1
2

⌊
py

q

⌋
=

(p− 1)(q − 1)

4
.

The odd variant of Gauss’s lemma now yields(
q

p

)(
p

q

)
= (−1)(p−1)(q−1)/4,

whence (
q

p

)
= (−1)(p−1)(q−1)/4

(
p

q

)
.

We’re now equipped to compute general Legendre symbols.

Example 1.8.12. We compute that(
103

83

)
=

(
20

83

)
=

(
5

83

)
=

(
83

5

)
=

(
3

5

)
= −1,

so 103 is a quadratic non-residue modulo 83.
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What about higher powers?

Lemma 1.8.13. Let m ∈ N with (Z/mZ)× cyclic, let a ∈ Z be coprime to m,
and let n ∈ N. Then a is an nth power residue if and only if aφ(m)/(n,φ(m)) ≡
1 mod m.

Proof. We want to solve
xn ≡ a mod m.

Let g be a primitive root modulo m, and let b, y ∈ N with

a ≡ gb mod m, x ≡ gy mod m.

Our congruence becomes
gny ≡ gb mod m,

which is equivalent to ny ≡ b mod φ(m) by the order lemma. This has a
solution if and only if d | b, where

d = (n, φ(m)).

The upshot is that a is an nth power residue if and only if d | b.
If d | b then

aφ(m)/d ≡ gbφ(m)/d ≡ 1 mod m,

by Euler’s theorem. Conversely, if aφ(m)/d ≡ 1 mod m, then

gbφ(m)/d ≡ 1 mod m,

so φ(m) divides bφ(m)/d, and finally d | b.
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2 Diophantine equations

These are equations where we consider integer solutions. We’ll be consider-
ing equations defined by the vanishing of a polynomial. Key data include
its degree, the number of variables, and whether the polynomial is homo-
geneous. Our polynomials will be fairly tame in the sense that they won’t
contain ‘cross terms’ such as xy. Nonetheless, we’ll see rich theories on lin-
ear combinations of squares and higher powers, which neatly demonstrate
the interaction between addition and multiplication.

2.1 The geometry of numbers

This is about counting lattice points in Euclidean regions. There’s a Lipschitz
principle that if the region is nice then the number of lattice points should
be roughly the volume, after a suitable normalisation if appropriate.

Example 2.1.1 (Gauss circle problem, non-examinable). For R ⩾ 1, write

N(R) = #{(x, y) ∈ Z2 : x2 + y2 ⩽ R2}.

This is the number of integer pairs within a circle of radius R centred at the
origin. One can use the geometry to estimate N(R) by the area πR2, with
an error of at most a constant times the circumference 2πR. Gauss argued
in this way to show that the error

E(R) = N(R)− πR2

satisfies
|E(R)| ⩽ 2

√
2πR.

The Gauss circle problem is to bound this error asymptotically. The record
is held by Huxley, who showed that if θ > 131/208 ≈ 0.63 then there exists
C = C(θ) such that

E(R) ⩽ CRθ

for all R. The optimal exponent is believed to be 1/2.

Our study of quadratic diophantine equations will require a key result
about lattice points in symmetric, convex bodies, calledMinkowski’s theorem.
This won’t be as precise as counting lattice points accurately. Under suitable
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conditions, it will tell us that there’s at least one lattice point, once the
volume of the region exceeds a large multiple of the covolume of the lattice.

Let n ∈ N. A (full) lattice in Rn is

Λ = {a1u1 + · · ·+ anun : a1, . . . , an ∈ Z},

where u1, . . . ,un ∈ Rn are linearly independent vectors.

Example 2.1.2. The standard Euclidean basis generates the lattice Zn.

We say that u1, . . . ,un form a basis for the lattice Λ. They form a square
matrix whose absolute determinant

det(Λ) = |det(u1, . . . ,un)|

is called the determinant of the lattice.

Lemma 2.1.3. The determinant of a lattice is well defined.

Proof. Let u1, . . . ,un and v1, . . . ,vn be bases for a lattice Λ in Rn. Then
there are n× n integer matrices A = (ai,j) and B = (bj,k) such that

ui =
∑
j

ai,jvj (1 ⩽ i ⩽ n), vj =
∑
k

bj,kuk (1 ⩽ j ⩽ n).

Thus U = AV and V = BU , where

U = (u1, . . . ,un), V = (v1, . . . ,vn),

and in particular
B = V U−1 = (UV −1)−1 = A−1.

Now det(A)det(B) = 1, so det(A) = ±1. Finally, as determinants respect
products, we have

|det(U)| = |det(A)| · |det(V )| = |det(V )|.

The determinant of Λ is, equivalently, the volume of the fundamental
domain

D0 =

{∑
i

xiui : 0 ⩽ xi < 1

}
.
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Euclidean space Rn is tiled by the lattice translates of D0. As volume is
translation-invariant, we have

det(Λ) = vol(D)

for any such translate D.

Example 2.1.4. The lattice Zn has determinant 1. The fundamental do-
main, with respect to the standard Euclidean basis, is a unit hypercube.

A set S ⊆ Rn is symmetric for −x ∈ S for all x ∈ S. It is convex if, for
any x,y ∈ S, the line segment

{tx+ (1− t)y : 0 ⩽ t ⩽ 1}

between them is contained in S.

Theorem 2.1.5 (Minkowski’s theorem, 1891). Let Λ be a lattice in Rn, and
let S ⊆ Rn be a symmetric, convex set whose volume exceeds 2ndet(Λ). Then
S contains a non-zero lattice point.

We introduce some notation for its proof. For t > 0, we write

tS = {tx : x ∈ S}.

For X, Y ⊆ Rn, we write

X + Y = {x+ y : x ∈ X, y ∈ Y }.

Proof. By intersecting with a large ball, we may assume that S has finite
volume. It suffices to prove that there are two distinct point x,x′ ∈ R := 1

2
S

whose difference lies in Λ. Indeed, if this is the case then symmetry yields

2x,−2x′ ∈ S,

and then by convexity S also contains their midpoint x− x′.
Summing over lattice translates of D0, where λD +D = D0, observe that∑

D

vol(λD + (R ∩D)) =
∑
D

vol(R ∩D) = vol(R) = 2−nvol(S)

> det(Λ) = vol(D0).

Each λD + (R∩D) is a subset of D0, so these sets cannot be disjoint. Thus,
there exist x,x′ ∈ R and distinct λ, λ′ ∈ Λ such that

λ+ x = λ′ + x′.

Finally, we have x− x′ = λ′ − λ ∈ Λ.
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We’ll see Minkowski’s theorem in action soon enough. If the set is com-
pact (closed and bounded), then the inequality doesn’t need to be strict. We
deduce this from Minkowski’s theorem using Cantor’s intersection theorem,
which asserts that if

C1 ⊃ C2 ⊃ . . .

are non-empty, compact subsets of Rn then their intersection is non-empty.

Corollary 2.1.6 (Strong form of Minkowski’s theorem). Let Λ be a lattice
in Rn, and let S ⊂ Rn be a compact, symmetric, convex set whose volume is
greater than or equal to 2ndet(Λ). Then S contains a non-zero lattice point.

Proof. Given k ∈ N, the set

Sk =

(
1 +

1

k

)
S

is symmetric and convex, and has volume exceeding 2ndet(Λ), so it must
contain a non-zero lattice point. By Cantor’s intersection theorem, the in-
tersection of the compact sets Sk ∩ (Λ \ {0}) is non-empty. Finally, if x lies
in this intersection then(

1− 1

k + 1

)
x ∈ S (k ∈ N)

so, as S is closed, the accumulation point x must also lie in S.

We’ll use the strong form of Minkowski’s theorem later, but not before
we’ve used the standard version a couple of times!

2.2 Sums of squares

Which numbers can be written as a sum of two squares? Clearly not numbers
that are 3 mod 4. The following result is often attributed to Fermat, though
it would seem that its proof was only completed by Euler in 1760.

Theorem 2.2.1. Let p ≡ 1 mod 4 be prime. Then p is a sum of two squares.

Proof. We know that −1 is a square modulo p, so let m be an integer such
that

m2 ≡ −1 mod p.
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The lattice Λ spanned by (1,m) and (0, p) has determinant p. The symmetric,
convex body

{(x, y) ∈ R2 : x2 + y2 < 2p}
has area 2πp > 4p = 22det(Λ), so it contains

(x, y) = a(1,m) + b(0, p) = (a, am+ bp)

for some (a, b) ∈ Z2 \ {(0, 0)}. As

x2 + y2 ≡ a2 + a2m2 = a2(1 +m2) ≡ 0 mod p

and 0 < x2 + y2 < 2p, we must have x2 + y2 = p.

The set of sums of two squares is closed under multiplication, which will
enable us to strengthen the previous result considerably.

Lemma 2.2.2. If a, b ∈ N are sums of two squares, then so too is ab.

Proof. Let x, y, z, w ∈ Z with a = x2 + y2 and b = z2 + w2. Then

(xz+yw)2+(xw−yz)2 = x2z2+y2w2+x2w2+y2z2 = (x2+y2)(z2+w2) = ab.

In order to fully classify numbers that are a sum of two squares, we also
require some information in the opposite direction.

Lemma 2.2.3. Let x, y ∈ Z, and suppose a prime p ≡ 3 mod 4 divides
x2 + y2. Then p | x and p | y.

Proof. If p ∤ x then (yx−1)2 ≡ −1 mod p, contradicting that
(

−1
p

)
= −1.

Thus p | x, and by symmetry p | y.

Corollary 2.2.4. If n ∈ N is a sum of two squares and p ≡ 3 mod 4 is a
prime divisor of n, then p2 | n, and n/p2 is a sum of two squares.

Finally, we require a concept that’s generally useful in number theory. A
prime power pk exactly divides an integer n if

pk | n, pk+1 ∤ n,

and we write pk∥n if this occurs. If n ̸= 0, then there is a unique such value
of k, which we denote by νp(n) and call the p-adic order of n. We define
νp(0) = ∞.
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Theorem 2.2.5 (Two-square theorem). A positive integer n can be expressed
as a sum of two squares if and only if, for any prime p ≡ 3 mod 4, we have
νp(n) ≡ 0 mod 2.

Proof. Suppose νp(n) is even for each prime p ≡ 3 mod 4. Then n = ab2

for some a, b ∈ N, where a has no prime divisors that are 3 mod 4. As 2
is a sum of two squares, and any p ≡ 1 mod 4 is a sum of two squares,
multiplicative closure implies that a is a sum of two squares, say a = x2+y2.
Now ab2 = (xb)2 + (yb)2.

Conversely, if n is a sum of two squares then, for any prime p ≡ 3 mod 4
dividing n, we have p2 | n and that n/p2 is a sum of two squares. Repeating
this argument, we conclude that νp(n) is even for each prime p ≡ 3 mod 4.

There’s a similar criterion for sums of three squares that we shan’t prove.
Recall that we saw the congruence obstruction earlier.

Theorem 2.2.6 (Legendre’s three-square theorem). A positive integer is a
sum of three squares if and only if it’s not of the form

4a(8b+ 7),

where a, b ∈ Z⩾0.

Example 2.2.7. As

2028 = 4× 507, 507 ≡ 7 mod 8,

we can’t write 2028 as a sum of three squares.

We’ll show that any positive integer is a sum of four squares. Be careful,
as zero needs to count as a square here! Show as an exercise that if k is odd
then 2k is not a sum of exactly four positive squares.

As with sums of two squares, the set of sums of four squares is closed
under multiplication.

Lemma 2.2.8. If a, b ∈ N are sums of four squares, then so too is ab.
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Proof. You can check the identity

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y32 + y24)

= (x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 + x3y4 − x4y3)

2

+ (x1y3 − x3y1 + x4y2 − x2y4)
2 + (x1y4 − x4y1 + x2y3 − x3y2)

2

using your favourite computer algebra software.

Theorem 2.2.9 (Lagrange’s four-square theorem). Any positive integer is a
sum of four squares.

Example 2.2.10. Let’s write 2024 as a sum of four squares. We have

2024− 442 = 88 = 4(9 + 9 + 4),

so
2024 = 442 + 62 + 62 + 42.

Now try writing it as a sum of three squares.

Proof. By multiplicative closure and the fact that 2 = 12 + 12 + 02 + 02, it
suffices to show that any odd prime is a sum of four squares. Let p be an
odd prime. We’ll find x, y, z, w ∈ Z such that x2 + y2 + z2 + w2 is divisible
by p and lies in the interval (0, 2p), which will complete the proof.

The sets
{a2 : a ∈ Z/pZ}, {−b2 − 1 : b ∈ Z/pZ}

each have cardinality (p+ 1)/2, so they must intersect. Hence

a2 + b2 ≡ −1 mod p,

for some a, b ∈ Z. If (x, y, z, w) lie in

Λ = {(x, y, z, w) ∈ Z4 : z ≡ ax+ by mod p, w ≡ ay − bx mod p},

then

x2 + y2 + z2 + w2 ≡ x2 + y2 + (ax+ by)2 + (bx− ay)2

≡ x2 + y2 + (a2 + b2)x2 + (a2 + b2)y2

≡ (a2 + b2 + 1)(x2 + y2) ≡ 0 mod p.
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Observe that 
1
0
a
−b

 ,


0
1
b
a

 ,


0
0
p
0

 ,


0
0
0
p


form a basis for the lattice Λ, and that det(Λ) = p2. The symmetric, convex
body

{(x, y, z, w) ∈ R4 : x2 + y2 + z2 + w2 < 2p}

has volume
π2

2
(
√

2p)4 = 2π2p2 > 24det(Λ),

so it contains a non-zero element of Λ.

2.3 Gaussian primes

The ring of Gaussian integers is

Z[i] = {x+ yi : x, y ∈ Z}.

Given α, β ∈ Z[i], we say that α divides β, and write α | β, if there exists
γ ∈ Z[i] such that αγ = β. For x, y ∈ Z, the norm of α = x+ yi is

N(α) = |α|2 = x2 + y2 ∈ Z⩾0.

Thus, sums of two squares are precisely norms of Gaussian integers. It’s
convenient for us to write N(α) = |α|2 for α ∈ C.

Lemma 2.3.1. If α, β ∈ C then N(αβ) = N(α)N(β).

Proof. We have

N(αβ) = |αβ|2 = |α|2|β|2 = N(α)N(β).

A unit in a ring is an invertible element.

Lemma 2.3.2. The units in Z[i] are ±1,±i.
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Proof. Observe that ±1,±i are precisely the elements of norm one. Let
α ∈ Z[i].

First suppose N(α) = 1. Then αᾱ = 1, so α is a unit.
Conversely, suppose α is a unit. Then, for some β ∈ Z[i], we have αβ = 1.

Hence
N(α)N(β) = N(αβ) = N(1) = 1,

so N(α) = 1.

Lemma 2.3.3 (Division algorithm in the Gaussian integers). Let α, β ∈ Z[i]
with β ̸= 0. Then there exist γ, δ ∈ Z[i] such that α = βγ + δ and N(δ) <
N(β).

Note that we have not claimed uniqueness.

Proof. Let γ ∈ Z[i] with |α/β − γ| minimal, so that

N(α/β − γ) ⩽
1

2
< 1.

Then, with δ = α− βγ, we have

N(δ) = N(α/β − γ)N(β) < N(β).

Example 2.3.4. Let’s divide α = 4 + 5i by β = 3 with remainder in the
Gaussian integers. We have

4 + 5i

3
=

4

3
+

5

3
i,

so we can take γ = 1 + 2i as our quotient and δ = 1− i as our remainder:

4 + 5i = (1 + 2i)3 + (1− i).

We check that N(1 − i) = 2 < 9 = N(3). Can you identify the other
solutions?

Given α, β ∈ Z[i], not both zero, a greatest common divisor (GCD) of a
and b is a common divisor of maximal norm. As we have the division algo-
rithm, the extended Euclidean algorithm carries through in Z[i], expressing
any greatest common divisor as a linear combination of the two Gaussian
integers.

41



Lemma 2.3.5 (Bézout’s lemma in the Gaussian integers). Let δ be a GCD
of α, β ∈ Z[i]. Then there exist κ, λ ∈ Z[i] such that

κα + λβ = δ.

Example 2.3.6. Let’s compute a GCD of 4 + 5i and 3, in Z[i], and write it
as a linear combination of 4 + 5i and 3. We have

4 + 5i = (1 + 2i)3 + (1− i)

3 = (1 + i)(1− i) + 1

1− i = (1− i)1,

so 1 is a GCD and

1 = 3− (1 + i)(1− i)

= 3− (1 + i)(4 + 5i− (1 + 2i)3)

= (3i)3− (1 + i)(4 + 5i).

A Gaussian prime is a non-zero, non-unit Gaussian integer π such that
if α, β ∈ Z[i] and π | αβ then π | α or π | β. This is motivated by Euclid’s
lemma, and is equivalent to the following notion. A Gaussian integer is
irreducible if it is non-zero, not a unit, and cannot be expressed as a product
of two non-units.

Lemma 2.3.7. Let π be a non-zero, non-unit Gaussian integer. Then π is
a Gaussian prime if and only if it’s irreducible.

Proof. First suppose π is a Gaussian prime, and that π = αβ for some
α, β ∈ Z[i]. Then π | α or π | β, so we may assume without loss that π | α.
Now α = πγ for some γ ∈ Z[i], so

π = αβ = πγβ.

Therefore γβ = 1, and in particular β is a unit. We conclude that π is
irreducible.

Now suppose instead that π is irreducible, and that π | αβ for some
α, β ∈ Z[i]. Let δ be a GCD of π, α. By Bézout’s lemma, there exist
κ, λ ∈ Z[i] such that

κπ + λα = δ.
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As π is irreducible, we must have that δ is a unit or a unit multiple of π. If
δ is a unit then, as

δβ = κπβ + λαβ

is divisible by π, we must have π | β. If δ is a unit multiple of π, then π | α.
In each case, we have π | α or π | β, so π is a Gaussian prime.

Lemma 2.3.8. If π is a Gaussian prime then so is any unit multiple of π,
and so is π̄.

Proof. Exercise.

Lemma 2.3.9. Let π ∈ Z[i] with N(π) prime. Then π is a Gaussian prime.

Proof. Suppose π = αβ with α, β ∈ Z[i]. Then

N(α)N(β) = N(π)

is prime, so N(α) = 1 or N(β) = 1, so α is a unit or β is a unit.

Example 2.3.10. As N(1 + i) = 2 is prime, we see that 1 + i is a Gaussian
prime.

Example 2.3.11. In spite of not having prime norm, the integer 3 is a
Gaussian prime. Indeed, suppose 3 = αβ for some α, β ∈ Z[i]. Then

N(α)N(β) = 9

and, as 3 is not a sum of two squares, we must have N(α) = 1 or N(β) = 1,
so α is a unit or β is a unit.

Adapting this example gives the following.

Lemma 2.3.12. If p ≡ 3 mod 4 is prime then p is a Gaussian prime.

Theorem 2.3.13 (Unique factorisation). Any non-zero, non-unit Gaussian
integer is a product of Gaussian primes. This expression is unique, up to
re-ordering and multiplication by units.

Proof. Let α ∈ Z[i]. We start with existence. Our inductive base is the case
N(α) = 2. As N(α) is prime, we must have that α is a Gaussian prime.
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Next, suppose that any Gaussian integer of norm in [2, N(α) − 1] is a
product of Gaussian primes. If α is not a Gaussian prime, then we have

α = βγ

for some β, γ ∈ Z[i] whose norms are in [2, N(α) − 1]. By our inductive
hypothesis, we can write β and γ as a product of Gaussian primes, and
hence we can also express α as a product of Gaussian primes.

We come to uniqueness. Any factorisation of α into Gaussian primes can
be written as

α = µ0π1 · πk,

where µ0 is a unit and π1, . . . πk are Gaussian primes, normalised to have
positive real part and non-negative imaginary part. If two such expressions
are equal, then we can divide out by common factors, giving

π1 · · · πs = µψ1 · · ·ψt,

where {πi} and {ψj} are disjoint and µ is a unit, and s ⩾ 1. Now π1
divides some ψj, and therefore equals ψj by normalisation, contradicting
disjointness.

We’ll see an example of this shortly. First, we need to determine what
the Gaussian primes are!

Theorem 2.3.14 (Classification of Gaussian primes). The following is a
complete list of Gaussian primes.

• Prime p ≡ 3 mod 4 times a unit.

• α ∈ Z[i] such that N(α) is prime.

Proof. We’ve seen that these are Gaussian primes. Now suppose α = x+ yi
is a Gaussian prime, where x, y ∈ Z, and let p be a prime divisor of N(α) =
x2 + y2.

First suppose p = 2. Then x ≡ y mod 2 and

α = (1 + i)

(
x+ y

2
+
y − x

2
i

)
.

Consequently, the second factor is a unit, and N(α) = 2 is prime.
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Next, suppose instead that p ≡ 3 mod 4. As p divides x2 + y2, Lemma
2.2.3 gives p | x and p | y, so p | α. Thus α is a unit multiple of p.

Finally, suppose instead that p ≡ 1 mod 4, and write p = a2 + b2 with
a, b ∈ N. It remains to show that α is divisible by π := a+bi or π̄ (whereupon
N(α) = p is prime). We compute that

α

π
=

π̄α

N(π)
=

(a− bi)(x+ yi)

a2 + b2
=
ax+ by

p
+
ay − bx

p
i

and

α

iπ̄
=

−πiα
N(π)

=
−i(a+ bi)(x+ yi)

a2 + b2
=

(b− ai)(x+ yi)

p
=
bx+ ay

p
+
by − ax

p
i.

Observe that

(by + ax)(by − ax) = b2y2 − a2x2 = (a2 + b2)y2 − a2(x2 + y2)

is divisible by p, as is

(ay − bx)(ay + bx) = a2y2 − b2x2 = (a2 + b2)y2 − b2(x2 + y2).

We now distinguish four cases.

Case: p divides by + ax and ay − bx. Then π | α.
Case: p divides by − ax and ay + bx. Then π̄ | α.
Case: p divides by + ax and ay + bx. Then p divides

y(ax+ by)− x(ay + bx) = b(y2 − x2)

so, as p is too large to divide b, it must divide y2 − x2. Since p also divides
y2 + x2, we see that p | 2x2 and p | 2y2. Now p divides x and y, and so π | α.

Case: p divides by − ax and ay − bx. Then p divides

y(by − ax) + x(ay − bx) = b(y2 − x2),

so again π | α.

From the proof above, we also learn a bit more about factorisation in Z[i].

Lemma 2.3.15. Let α ∈ Z[i], and let p be a prime divisor of N(α). Then:
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(a) If p = 2 then 1 + i divides α.

(b) If p ≡ 3 mod 4 then p | α.

(c) If p = x2 + y2 with x, y ∈ N then x+ yi or x− yi divides α.

Example 2.3.16. Let’s factorise 39− 48i into Gaussian primes. Note that

39− 48i = 3(13− 16i),

and that 3 is a Gaussian prime. We have

N(13− 16i) = 169 + 256 = 425 = 52 × 17,

so 13− 16i is divisible by 2 + i or 2− i. We compute that

13− 16i

2 + i
=

(2− i)(13− 16i)

5
= 2− 9i,

which has norm 5× 17. Moreover

2− 9i

2 + i
=

(2− i)(2− 9i)

5
= −1− 4i.

Therefore
39− 48i = 3(2 + i)2(−1− 4i),

and the factors 2 + i, −1 − 4i are Gaussian primes because their norms are
prime.

2.4 Pythagorean triples

A Pythagorean triple is a solution (x, y, z) ∈ N3 to x2 + y2 = z2. These are
triples of positive integers that can be the side lengths of a right triangle.

Example 2.4.1. The simplest Pythagorean triple is (3, 4, 5).

A Pythagorean triple (x, y, z) is primitive if gcd(x, y, z) = 1. To mo-
tivate this definition, note that if (x, y, z) is a Pythagorean triple then so
too is (dx, dy, dz) for any d ∈ N. Note also that primitivity of (x, y, z) is
equivalent to the coordinates being pairwise coprime, for if a prime divides
two of the coordinates then it must divide the other. If (x, y, z) is a prim-
itive Pythagorean triple, then we may assume that y is even, since mod 4
considerations prevent x and y from both being odd.
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Theorem 2.4.2 (Parametrisation of Pythagorean triples, Diophantus, circa
250AD). A triple (x, y, z) ∈ N3 is a primitive Pythagorean triple, with y even,
if and only if

x = u2 − v2, y = 2uv, z = u2 + v2

for some coprime u, v ∈ N, not both odd, such that u > v.

Proof. If x, y, z are of the given form then

z2 − x2 = 4u2v2 = y2.

If, further, a prime p divides x and z, then p | z ± x, so

p | (2u2, 2v2) = 2(u, v)2 = 2.

This can’t happen, since u and v have different parity. Thus the triple is
primitive, and we’ve demonstrated the ‘if’ part.

For the ‘only if’ part, let (x, y, z) be a primitive Pythagorean triple, with
y even. Then x and z are both odd, leading us to the factorisation

y2 = 4ab, a =
z + x

2
, b =

z − x

2
.

Observe that if d ∈ N divides a and b then d | a + b = z and d | a − b = x,
so d = 1. Therefore a and b are coprime, and their product is a square, so a
and b must be squares. Setting u =

√
a and v =

√
b, it remains to show that

a and b are not both odd. Assume for a contradiction that a ≡ b ≡ 1 mod 2.
Then z±x ≡ 2 mod 4, so 2z ≡ 0 mod 4, which is impossible as z is odd.

2.5 Ternary quadratic equations

Here we consider equations of the form

ax2 + by2 = cz2,

where a, b, c ∈ N are given. We look for non-trivial integer solutions, the
trivial solution being (0, 0, 0). We’ve seen in an exercise that if (a, b, c) =
(1, 1, 3) then there are no solutions. On the other hand, there are infinitely
many solutions if (a, b, c) = (1, 1, 1).
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Theorem 2.5.1. Let a, b, c ∈ N be squarefree and pairwise coprime. Then
the equation

ax2 + by2 = cz2

has a non-trivial integer solution if and only if:

• bc is a quadratic residue modulo a,

• ac is a quadratic residue modulo b, and

• −ab is a quadratic residue modulo c.

Proof. First suppose that (x, y, z) is a non-trivial solution to the equation.
We may assume that the coordinates are pairwise coprime. Indeed, any prime
divisor of two of them would divide the third, by the squarefree condition,
and if p divides x, y, z then (x/p, y/p, z/p) also solves the equation.

Multiplying by c yields

acx2 + bcy2 = (cz)2,

so
bcy2 ≡ (cz)2 mod a.

Moreover, we have (a, y) = 1. Indeed, assume for a contradiction that p | a
and p | y. Then p | cz2. Also p ∤ c, since p | a and (a, c) = 1. Therefore p | z,
contradicting the coprimality of y and z. This confirms that (a, y) = 1.

Now
bc ≡ (y−1cz)2 mod a.

Similarly, one can show that ac is a square modulo b and −ab is a square
modulo c.

For the converse, we apply the strong form of Minkowski’s theorem. Let
r, s, t ∈ Z with

r2 ≡ bc mod a, s2 ≡ ac mod b, t2 ≡ −ab mod c.

Suppose (x, y, z) lies in the set

Λ = {(x, y, z) ∈ Z3 : by ≡ rz mod a, cz ≡ sx mod b, ax ≡ ty mod c}.

Then
bry ≡ r2z ≡ bcz mod a,
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so as (a, b) = 1 we have ry ≡ cz mod a, and hence

ax2 + by2 − cz2 ≡ by2 − cz2 ≡ rzy − cz2 ≡ z(ry − cz) ≡ 0 mod a.

Similar arguments reveal that ax2+by2−cz2 is divisible by b and c. As a, b, c
are pairwise coprime, we thus have

ax2 + by2 − cz2 ≡ 0 mod abc.

The congruences defining Λ can be rewritten as

y ≡ t−1
c ax mod c, z ≡ c−1

b sx mod b, z ≡ r−1
a by mod a,

where t−1
c denotes the inverse of t modulo c and so on. By the Chinese

remainder theorem, we can write these congruences as

y ≡ ηx mod c, z ≡ τx+ ρy mod ab,

for some η, τ, ρ ∈ Z. Now

y = ηx+ cu, z = (τ + ρη)x+ ρcu+ abv

for some u, v ∈ Z, so 1
η

τ + ρη

 ,

 0
c
ρc

 ,

 0
0
ab


form a basis for the lattice Λ of determinant abc. The compact, symmetric,
convex body

[−
√
bc,

√
bc]× [−

√
ac,

√
ac]× [−

√
ab,

√
ab]

has volume
8abc = 23det(Λ)

so, by strong Minkowski, it contains a non-zero element (x, y, z) ∈ Λ.
Now

x2 ⩽ bc, y2 ⩽ ac, z2 ⩽ ab.

If x2 = bc then, since b, c are coprime and squarefree, we must have b = c = 1,
and our equation has the solution (0, 1, 1). We may therefore assume instead
that x2 < bc.
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Next, suppose z2 = ab. Then a = b = 1. In this case −1 is a quadratic
residue modulo c, so c can’t have any prime factors that are 3 mod 4, so c is
a sum of two squares. Thus, we may also assume that z2 < ab.

Now ax2+by2−cz2 is a multiple of abc and lies in the interval (−abc, 2abc),
so it’s either 0 or abc. If it’s zero, then (x, y, z) solves the equation, and if

ax2 + by2 − cz2 = abc

then
a(xz + by)2 + b(yz − ax)2 − c(z2 + ab)2 = 0.

2.6 Hensel’s lemma

If a diophantine equation has an integer solution, then it’s also soluble mod-
ulo any positive integer. By the Chinese remainder theorem, the latter is
equivalent to solubility modulo any prime power. However, a root modulo a
prime p can often be upgraded to a root modulo any given power of p.

Let’s start with a close analogy. Let f be a real function on an interval,
with continuous second derivative. Given a good initial estimate for a root
of f , the Newton–Raphson method constructs a sequence of points whose
distance to the root decreases rapidly to zero.

Newton–Raphson method:
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1. Choose x1 very close to a root of f .

2. For n ∈ N, let xn+1 = xn − f(xn)
f ′(xn)

.

Let p be prime. Recall that the p-adic order of n ∈ Z is

νp(n) = sup{k : pk | n}.

The p-adic absolute value of n is

|n|p = p−νp(n).

Thus, being small means being divisible by a higher power of p, and being
close means being congruent modulo a high power of p. Finding smaller and
smaller values of a polynomial means solving it modulo higher and higher
powers of p.

Lemma 2.6.1 (Hensel’s lemma). Let f(x) ∈ Z[x]. Suppose k, n, x ∈ Z
satisfy

f(x) ≡ 0 mod pn, pk∥f ′(x), n ⩾ 2k + 1.

Then there exists y ≡ x mod pn−k such that

f(y) ≡ 0 mod pn+1, pk∥f ′(y).

Remark 2.6.2. (a) We can iterate to find a root modulo any power of p.

(b) It’s most common to apply this with k = 0. We find that if f(x) ≡
0 mod pn and p ∤ f ′(x) then there exists y ∈ Z such that f(y) ≡
0 mod pn+1 and p ∤ f ′(y).

(c) Applying the lemma with k = 1, we find that if an odd number is a
quadratic residue modulo 8 then it’s a quadratic residue modulo any
power of 2.

Example 2.6.3. As
(
2
7

)
= 1, we can apply Hensel’s lemma to x2−2, and find

that 2 is a quadratic residue modulo any power of 7. Can you see explicitly
how it’s a quadratic residue modulo 49?

Proof. Write
y = x+ zpn−k,
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where z is an integer to be determined. It follows from Taylor’s theorem that

f(y) ≡ f(x) + f ′(x)zpn−k mod p2n−2k.

As 2n− 2k ⩾ n+ 1, we thus have

f(y) ≡ f(x) + f ′(x)zpn−k mod pn+1.

Next, let a, b ∈ Z with

f ′(x) = apk, f(x) = bpn.

Then p ∤ a and
f(y) ≡ (az + b)pn mod pn+1.

We choose z ≡ −a−1b mod p to ensure that f(y) ≡ 0 mod pn+1.
As y ≡ x mod pn−k, we have f ′(y) ≡ f ′(x) mod pn−k. Hence f ′(y) ≡

f ′(x) mod pk+1, so as pk∥f ′(x) we must also have pk∥f ′(y).

To complete the analogy, these roots need to converge to a limit.

Example 2.6.4. Completing the rationals with respect to |·| forms the reals,
where every Cauchy sequence has a limit.

This requires us to complete the integers with respect to the the p-adic
absolute value, forming the p-adic integers. In the same way, completing the
rationals with respect to | · |p gives rise to the p-adic numbers.

2.7 Waring’s problem

For k ∈ N, denote by g(k) the least s ∈ N such that if n ∈ N then there exist
x1, . . . , xs ∈ Z⩾0 such that

xk1 + · · ·+ xks = n.

By Lagrange’s four-square theorem and Legendre’s three-square theorem, we
have g(2) = 4. Waring (1770) conjectured that g(k) <∞ for all k. This was
finally proved by Hilbert in 1909, using polynomial identities, but with poor
bounds on g(k).

Theorem 2.7.1 (Refinement of Liouville, 1859). We have g(4) ⩽ 50.
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Proof. Using your favourite computer algebra software, you can check that

6

(
4∑

i=1

a2i

)2

=
∑

1⩽i<j⩽4

(
(ai + aj)

4 + (ai − aj)
4
)
.

By Lagrange’s four-square theorem, this enables us to write any number of
the form 6A2 as a sum of twelve biquadrates. By Lagrange’s four-square
theorem, we can write any N ∈ Z⩾0 as A2

1 + · · · + A2
4, so any number of

the form 6N is now a sum of 48 biquadrates. For n ⩾ 81, one can write
n = 6N + r with r = 0, 1, 2, 81, 16, 17, where r is the sum of two biquadrates.
One can check the cases n ⩽ 80 separately.

Example 2.7.2. How many kth powers are needed to represent

n0 = 2k⌊(3/2)k⌋ − 1 ?

As n0 < 3k, we can only use 2k and 1k, and the most efficient way is to use
⌊(3/2)k⌋ − 1 copies of 2k together with 2k − 1 copies of 1k. Thus

g(k) ⩾ 2k + ⌊(3/2)k⌋ − 2.

In fact, with {y} = y − ⌊y⌋ being the fractional part function, we know
that

g(k) = 2k + ⌊(3/2)k⌋ − 2

as long as
2k{(3/2)k}+ ⌊(3/2)k⌋ ⩽ 2k,

and that the latter inequality has at most finitely many exceptions (Mahler,
1957). The inequality has been confirmed for k ⩽ 4.7 × 108 (Kubina and
Wunderlich, 1990).

What if we were to exclude small values of n? This brings us to the
modern formulation of Waring’s problem. For k ∈ N, denote by G(k) the
least s ∈ N such that if n ∈ N is sufficiently large then there exist non-
negative integers x1, . . . , xs such that

xk1 + · · ·+ xks = n.

Note from the definitions that

G(k) ⩽ g(k) (k ∈ N).

53



By Lagrange’s four-square theorem and Legendre’s three-square theorem, we
have

G(2) = 4 = g(2).

In general G(k) is much smaller than g(k).
Linnik (1941) showed that G(3) ⩽ 7. Your second favourite lecturer,

with computer assistance, was able to determine precisely which integers are
a sum of at most seven positive cubes.

Theorem 2.7.3 (Siksek, 2016). Every integer greater than 454 is a sum of
seven non-negative cubes.

Theorem 2.7.4. For k ⩾ 2 we have G(k) ⩾ k + 1.

Proof. Let A(N) be the number of natural numbers n ⩽ N that are of the
form

n = x k
1 + · · ·+ x k

k (xi ∈ Z⩾0). (2.1)

Then A(N) ⩽ B(N), where B(N) counts (x1, . . . , xk) ∈ Zk such that

0 ⩽ x1 ⩽ x2 ⩽ . . . ⩽ xk ⩽ N1/k.

We compute that

B(N) =

⌊N1/k⌋∑
xk=0

· · ·
⌊N1/k⌋∑
x2=0

x2∑
x1=0

1

= (⌊N1/k⌋+ 1)k−2

⌊N1/k⌋∑
x2=0

(x2 + 1)

= (⌊N1/k⌋+ 1)k−2 (⌊N1/k⌋+ 1)(⌊N1/k⌋+ 2)

2
∼ N

2
(N → ∞).

Thus, if N is sufficiently large, then

B(N) ⩽
2

3
N.

Assume for a contradiction that G(k) ⩽ k. Then all but a finite number
of n ∈ N are representable as a sum of k non-negative kth powers. Let E be
the number of these exceptions. Then for all sufficiently large N we have

N − E = A(N) ⩽ B(N) ⩽
2

3
N.

54



Now N/3 ⩽ E for all sufficiently large N , contradiction. Therefore we must
instead have

G(k) ⩾ k + 1.

Stronger lower bounds are known for some specific values of k. For ex-
ample, if k = 2m ⩾ 4 then

G(k) ⩾ 4k.

There are numerous upper bounds that are much more involved. The record
is held by Brüdern and Wooley (2022), who showed that

G(k) ⩽ ⌈k(log k + 4.20032)⌉ (k ∈ N).

2.8 Diophantine approximation

Diophantine approximation quantifies the fact that Q is dense in R. Close
rational approximations to a real number can be found, for example, by
truncating its decimal expansion. More generally, to approximate α ∈ R,
one can choose the denominator q arbitrarily, and take the closest numerator
to qα.

Lemma 2.8.1. Let α ∈ R. Then there exists q ∈ N and a ∈ Z such that∣∣∣∣α− a

q

∣∣∣∣ ⩽ 1

2q
.

One can do better, in the sense that a closer approximation can be found,
considered in terms of the size of the denominator.

Theorem 2.8.2 (Dirichlet’s approximation theorem). Let α ∈ R and Q ∈ N.
Then there exist a, q ∈ Z such that

1 ⩽ q ⩽ Q,

∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
.

Proof. We wish to find a positive integer q ⩽ Q such that

∥qα∥ < Q−1,
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where ∥θ∥ = mina∈Z |θ − a|. For u = 0, 1, . . . , Q − 1, define Iu =
[
u
Q
, u+1

Q

)
.

By the pigeonhole principle, some Iu must contain {iα}, {jα}, for some 0 ⩽
i < j ⩽ Q. For q = j − i, we have

qα− ({jα} − {iα}) = ⌊jα⌋ − ⌊iα⌋ ∈ Z,

so
∥qα∥ ⩽ |{jα} − {iα}| < Q−1.

Corollary 2.8.3. If α ∈ R\Q then there are infinitely many reduced fractions
a/q such that ∣∣∣∣α− a

q

∣∣∣∣ < 1

q2
.

Proof. Given Q ∈ N, Dirichlet’s approximation theorem gives a, q ∈ Z such
that 1 ⩽ q ⩽ Q and |α− a/q| < 1/(qQ). By putting a/q in lowest terms, we
may assume that (a, q) = 1.

Assume for a contradiction that there are only finitely many such reduced
fractions, namely

a1
q1
, . . . ,

an
qn
.

As α /∈ Q, we have

α− ai
qi

̸= 0 (1 ⩽ i ⩽ n).

Thus, there exists Q ∈ N such that∣∣∣∣α− ai
qi

∣∣∣∣ > 1

Q
(1 ⩽ i ⩽ n).

By Dirichlet’s approximation theorem, there exist coprime a, q ∈ Z such that

1 ⩽ q ⩽ Q,

∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
⩽

1

Q
(1 ⩽ q ⩽ Q).

Now a/q is a reduced fraction with |α − a/q| < q−2, and a/q ̸= ai/qi for
i = 1, 2, . . . , n, contradiction.

The ‘best approximations’ to a real numbers can be computed using con-
tinued fractions. They can be used to slightly refine the estimate above.
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Theorem 2.8.4 (Hurwitz, 1891). If α ∈ R\Q then there are infinitely many
reduced fractions a/q such that∣∣∣∣α− a

q

∣∣∣∣ < 1√
5q2

.

In the case α = 1+
√
5

2
, the constant

√
5 can’t be replaced by a larger one.

An algebraic number is the root of a non-zero polynomial with rational
coefficients. Its degree is the least degree of such a polynomial. Algebraic
numbers are complex in general, but we’ll consider real algebraic numbers.

Theorem 2.8.5 (Liouville, 1844). Let α ∈ R be algebraic of degree n ⩾ 2.
Then there exists c = c(α) > 0 such that if a ∈ Z and q ∈ N then∣∣∣∣α− a

q

∣∣∣∣ > c

qn
.

Proof. Let f(x) ∈ Z[x] be a polynomial of degree n such that f(α) = 0. We
may assume that |α− a/q| ⩽ 1. By the mean value theorem, we have

|f(a/q)| = |f(α)− f(a/q)| ⩽ A|α− a/q|,

where
A = max{|f ′(x)| : |x− α| ⩽ 1}.

As α /∈ Q, we have f(a/q) ̸= 0, for otherwise

f(x)

x− a/q
∈ Q[x] \ {0}

would be a lower-degree polynomial vanishing at α. As qnf(a/q) ∈ Z, we
thus have

1 ⩽ qn|f(a/q)| ⩽ Aqn|α− a/q|.

Liouville’s theorem was refined by Thue (1909) and Siegel (1921), before
Roth finally attained the optimal exponent.

Theorem 2.8.6 (Roth, 1955). Let α ∈ R \ Q be algebraic, and let ε > 0.
Then there exists c = c(α, ε) > 0 such that if a ∈ Z and q ∈ N then∣∣∣∣α− a

q

∣∣∣∣ > c

q2+ε
.
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