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CHAPTER 1

Introductory Lecture: What is combinatorics?

Combinatorics is the study of finite structures. People often think combinatorics
means “counting problems,” but as we will see (especially later in the module),
many of the questions we will ask about finite structures are not about enumerating
anything.

Combinatorics is closely related to probability, often by simple linguistics: rather
than asking “How many possible 6-digit lottery numbers are there?” one asks “If
I choose a random 6-digit number, what is the probability that it is the winning
number?”

We are about to see many examples of counting problems, some simple and
some more complicated. (We will see that a simple-sounding question does not
need to have a simple-sounding answer!) Here are two counting problems to get us
started:

(1) Suppose I have k identical balls, and n boxes, each box labeled by a number
1, . . . , n. How many distinct ways are there to distribute the balls among
the boxes (so that every ball goes in a box)?

(2) Can you find a path in the following graph that visits each vertex exactly
once, and begins and ends at the same vertex? If so, how many such
paths?

•
•

•

•

•
•

•

•

•

•

(3) Suppose I have a regular hexagonal gameboard that looks like this:
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6 1. INTRODUCTORY LECTURE: WHAT IS COMBINATORICS?

If the side length is n, how many different ways are there to tile the
game-board completely with non-overlapping “rhombus domino” pieces as
below?

The first problem is a surprisingly useful counting problem; we will solve it,
and many variations on the same theme, shortly. The second problem is part of
the beautiful and useful field of graph theory, which we will cover in detail later in
the term. The third problem is harder, and has deep connections to many other
subjects. (E.g. graph theory, linear algebra, complex analysis, algebraic geometry,
statistical physics, quantum physics; it is a somewhat simplified model of crystal
formation, usually when n is very large.)

Exercise 0.1. How many rhombus domino tilings are there of the following
shapes?

(Generalise the last two to arbitrary lengths!)

The answer for the regular-hexagonal board was calculated by Percy MacMahon:

Theorem 0.2 (MacMahon’s Formula, 1916). The number of rhombus domino
tilings of the side-length-n hexagon is

n∏
i=1

n∏
j=1

n∏
k=1

i+ j + k − 1

i+ j + k − 2
.
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Plugging in n = 3 as above yields

2 · 33 · 46 · 57 · 66 · 73 · 8
1 · 23 · 36 · 47 · 56 · 63 · 7

= 980.

While this answer is very beautiful, here are two comments that shows that there is
structure to this problem beyond just a counting problem.

Comment 1: There are three orientations that each rhombus can be in:

If we tilt our gameboard and colour them differently, we see a 3D effect: box packings
in the corner of a room.

In this class, we will often be interested in the relationships between different
counting problems; in this case, between our original hexagon-tiling problem and
the new problem of counting box packings in the corner of an n × n × n room.
Often we will solve counting problems using these relationships, where choosing one
interpretation over another may give us a different set of proof ideas.

Comment 2: Suppose that of all the tilings of a side-length-n hexagon, we
choose a random one. Here is a picture (and this is a typical example):
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Note the approximation of a circle around the edge – what causes this? And what
might it say about the structural properties of our “crystal”?



CHAPTER 2

Enumerative Combinatorics: Counting Things

1. Placing balls in boxes

We now lay out some of the most basic counting problems, some of which may
be familiar.

Example 1.1. Suppose we have k labeled balls (e.g. they have integers 1, . . . , k
written on them), and n labeled boxed (labeled with integers 1, . . . , n). How many
different ways are there to distribute the balls in the boxes. (Every ball has to go in
a box, and a box can hold arbitrarily many balls.)

Example 1.2 (Allowing unlabeled balls and/or boxes). Same question, but
with k unlabeled (indistinguishable) balls and n unlabeled boxes.

Example 1.3 (Restricting capacities of boxes). Same question, with k unlabeled
balls and n labeled boxes, where each box can only hold a single ball. Or each box
can hold at most two, or . . .

Example 1.4 (Semi-distinguished balls/boxes). Suppose we have k1 red balls
and k2 blue balls . . ., or n1 green boxes and n2 yellow boxes . . .

Example 1.5 (Most general). We have k1 balls of colour c1, k2 balls of colour
c2, . . ., kr balls of colour cr. We have n1 boxes of colour d1, with capacities
N1,1, . . . , N1,n1

, and n2 boxes of colour d2, with capacities N2,1, . . . , N2,n2
, . . .,

ns boxes of colour ds, with capacities Ns,1, . . . , Ns,ns
. How many ways are there to

distribute the balls in the boxes?

(Even more general: also impose minimum capacities for each box, e.g. all
boxes must get a ball.)

It is not so important for us to think about the most general cases! However, as
we work through special cases, we will see many interesting examples, which we will
solve with a variety of different strategies. In doing so, we will build up a toolkit
that will equip us to solve a large number of counting problems.

Proposition 1.6. The number of ways to place k labeled balls into n labeled
boxes is nk.

Remark 1.7. I have here stated the answer first, and will now prove it – this
is backwards from how we usually actually do combinatorics, i.e. by using some
reasoning to come up with the answer. I’ll do both things in this class. In particular,
before I prove it, let’s see an example.

Example 1.8. Here are the 8 possibilities for k = 3, n = 2.

9



10 2. ENUMERATIVE COMBINATORICS: COUNTING THINGS

1 2 3 1 2 3 1 23 1 2 3

12 3 12 3 1 23 1 2 3

Proof of Proposition 1.6. There are n choices for where to put ball 1, n
choices for where to put ball 2, etc. □

Remark 1.9. This strategy — considering each ball individually — is probably
familiar enough, but is a usually a good way to start any counting problem.

Remark 1.10. If either “labeled” became “unlabeled”, problem would be
harder! We’ll come back to these. (Note to self: unlabeled-labeled is stars-
and-bars/weak compositions, labeled-unlabeled is set partitions/Stirling numbers,
unlabeled-unlabeled is integer partitions.)

Remark 1.11. How many length-k sequences (a1, a2, . . . , ak) are there whose
entries are 1, . . . , n? Same answer, same reasoning. Here they are when k = 3 and
n = 2:

(1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2)

(2, 1, 1) (2, 1, 2) (2, 2, 1) (2, 2, 2).

If we have two counting problems that seem to be “the same”, sometimes we can
show a relationship between them by matching up the objects being counted. How
can you match up the sequences with the ball arrangements? Such a matching up
of two sets is called a bijection.

2. Counting orderings

Suppose we have k labeled balls and n labeled boxes, and n = k, and each box
has capacity 1. How many ways can we distribute the balls in the boxes?

Let us apply the previous strategy of considering each ball individually. There
are n choices for where to put ball 1. No matter where we put it, there are n− 1
remaining choices for where to put ball 2, and so on. Thus the answer is

n · (n− 1) · · · · · 2 · 1 =

n∏
i=1

i.

This expression will come up so often we give it a name:

Definition 2.1. Let n be a positive integer. We define the factorial of n,
written n! and read as “n factorial”, to be the product of all positive integers at
most n. That is,

n! = 1 · 2 · · · · · (n− 1) · n =

n∏
i=1

i.

We also define 0! = 1. (This is a good idea, e.g. because it makes 1! = 1 · (0!) true,
in accordance with the pattern n! = n · (n− 1)!.)

(We’ll be seeing lots of mathematical definitions – you probably have seen
this one before, but it is here as an example of the structure of a mathematical
definition.)
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Example 2.2. Here are the 6 = 3 · 2 · 1 choices when n = 3.

1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

These distributions are called “reorderings” or “permutations” of {1, 2, . . . , n}.
Restating the above,

Proposition 2.3. The number of permutations of {1, 2, . . . , n} is n!.

3. Counting subsets two ways

How many ways are there to form a committee of 3 from 10 people? Let’s
think through it. Using our previous strategy, let us say there are three slots in the
committee. There are 10 people to put in slot 1. Then no matter which person was
chosen for slot 1, there are 9 other people for slot 2, then 8 others for slot 3. The
answer would seem to be 10 · 9 · 8 = 10!

7! , but we have of course overcounted. In fact,
what we have exactly counted is how many committees can be formed when the
people are labeled, e.g. president/vice president/treasurer.

Luckily, it is easy to tell how badly we have overcounted. In fact, we have
counted each committee exactly 6 times, one for each ordering of the members.
Thus the correct answer is 10·9·8

3·2·1 = 10!
7!3! = 120.

How can we turn this into a balls/boxes question? There are actually a couple
ways to do it. We could have the people be the balls, and have 2 boxes: “On the
committee” (capacity 3) and “Not on the committee” (capacity 7). The balls are
labeled (as the 10 people are all different people), and the boxes are also labeled.

Alternatively, we could have the people be the boxes, and have the committee
slots be the balls. In this case the people/boxes are labeled, whereas the committee
slots are not. (Indeed, when we overcounted earlier, the problem was exactly that
we had labeled the slots/balls.) Furthermore the boxes now have capacity 1, as a
person cannot be chosen for the committee twice. The above counting argument
now gives us two new solved problems:

Proposition 3.1. Let n be a positive integer, and let k ≤ n be a nonnegative
integer. The number of ways to distribute k unlabeled balls into n labeled capacity-1

boxes is n·(n−1)·····(n−(k−1))
k·(k−1)·····2·1 = n!

k!(n−k)! .

Proposition 3.2. Let n be a positive integer, and let k ≤ n be a nonnegative
integer. The number of ways to distribute n labeled balls into 2 labeled boxes with
capacities k and n− k is n!

k!(n−k)! .

Again we give this number a special name:

Definition 3.3. Let n ≥ k be positive integers. We define “n choose k”,
written

(
n
k

)
, to be the quantity n!

k!(n−k)! . The number
(
n
k

)
is also called a “binomial

coefficient”, for reasons we’ll shortly see.

Remark 3.4. If I had defined this out of the blue, it would not be clear that
it is an integer! However it must be an integer by the previous proposition, since
it is counting something. (It is surprisingly common in combinatorics to have an
expression that you suspect is an integer, but in order to prove it, you need to find
what counting problem it is the answer to.)

Some notes:
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•
(
n
k

)
=
(

n
n−k

)
.

•
(
n
0

)
=
(
n
n

)
= 1.

• We can write down all the binomial coefficients in “Pascal’s triangle”:

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

We might notice the following:

Proposition 3.5.
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Proof. Let us prove this two ways. On one hand, we have

(n− 1)!

k!(n− k − 1)!
+

(n− 1)!

(k − 1)!(n− k)!
=

(n− 1)!((n− k) + k)

k!(n− k)!
=

n!

k!(n− k)!
.

On the other hand, suppose we want to choose a k-person committee out of n people.
We could either choose Person 1, then choose a (k− 1)-person committee out of the
remaining (n− 1) people, or we could not chooose Person 1, and make a k-person
committee out of the remaining (n− 1) people. □

Let us connect the previous counting problem with the one where we counted
sequences (or labeled balls, labeled boxes), and at the same time, derive an interesting
formula.

Example 3.6. What if the committee were allowed to have any number of
people? I.e. distribute 10 labeled balls (people) in 2 labeled boxes with arbitrary
capacity: “In the committee” and “Not in the committee”. Actually, there is another
way to write this as a balls/boxes problem. The committee slots are unlabeled balls,
and there are 11 labeled boxes; one for each person (capacity 1), and one labeled
“unfilled” (infinite capacity). We have already solved the problem (Proposition 1.6)
of labeled balls and labeled boxes with arbitrary capacity: the answer is nk, i.e. in
this case 210. (Note: One of these choices is the “empty committee”.)

On the other hand, we can answer this same question in a different way – it is the
number of 0-person committees 1 =

(
10
0

)
, plus the number of 1-person committees

10 =
(
10
1

)
, plus the number of 2-person committees 45 =

(
10
2

)
, and so on. We

conclude a lovely formula:

2n =

n∑
k=0

(
n

k

)
.

For example, 1024 = 210 = 1+ 10 + 45 + 120 + 210 + 252 + 210 + 120 + 45 + 10 + 1.

Theorem 3.7 (Binomial Theorem). Let n be a positive integer. Then

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k.

Example 3.8. (a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4.



4. TYPES OF FUNCTIONS 13

Proof. Specifying a term of (a+ b)(a+ b) · · · (a+ b) consists of choosing, for
each factor, either the a or b. There are

(
n
k

)
ways to choose k as and n− k bs.

(Or prove by induction!) □

Remark 3.9. Plugging in a = b = 1 gives the previous formula.

Example 3.10. Above, the balls were unlabeled, but we can vary this – perhaps
our committee has a 2 co-presidents, and 3 other members. We’ll solve this two
ways too. We could first pick the co-presidents: there are

(
10
2

)
choices. Then from

the remaining 8 people we choose the other members, for
(
8
3

)
choices. The total is(

10

2

)(
8

3

)
=

10!

2!8!

8!

3!5!
=

10!

2!3!5!
.

Alternatively, we could overcount as above (getting 10 · 9 · 8 · 7 · 6 choices), and
then realize that we are overcounting by a factor of 12 = 2!3!, corresponding to the
orderings of the co-presidents and the other members.

In this problem, the balls came in two “colours” — 2 balls of colour “co-
president” and 3 balls of colour “member”. (And again, 10 labeled capacity-1 boxes
corresponding to people.) We might as well add in a 5 of a third colour of ball “not
in committee”. We can then summarize:

Proposition 3.11. Suppose we have n labeled boxes, and n balls — k1 labeled
with colour c1, k2 labeled with colour c2, and so on up to kr labeled with colour cr,
where k1 + k2 + · · ·+ kr = n. Then the number of distinct ways of distributing the
balls among the boxes is n!

k1!k2!···kr!
.

We give this quantity a symbol in analogy with binomial coefficients: it is(
n

k1,k2,...,kr

)
, and it is called a multinomial coefficient :

Theorem 3.12 (Multinomial theorem). Let n be a positive integer. Then

(a1 + · · ·+ ar)
n =

∑
k1+···+kr=n

(
n

k1, . . . , kr

)
ak1
1 · · · akr

r .

Exercise 3.13. How many ways are there to rearrange the letters in “GRAM-
MATICAL”? What are the boxes and what are the balls? (HW warm-up)

4. Types of Functions

Recall that if K and N are sets, a function f : K → N assigns a single element
of N to each element of K. There are some important classes of functions we’ll
want to talk about.

Definition 4.1. A function f : K → N is injective or one-to-one if it takes
each value at most once – that is, if we never have f(k1) = f(k2) for different
k1, k2 ∈ K.

Remark 4.2. It is only possible to have such a function if K has at most as
many elements as N , i.e. |K| ≤ |N | .

Definition 4.3. A function f : K → N is surjective or onto if it takes each
value at least once – that is, if every n ∈ N is equal to f(k) for some k ∈ K.

Remark 4.4. It is only possible to have such a function if K has at least as
many elements as N , i.e. |K| ≥ |N | .
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Definition 4.5. A function that is both injective and surjective is called
bijective.

Remark 4.6. It is only possible to have such a function if |K| = |N |.

Remark 4.7. A function is bijective if and only if it has an inverse; that is,
a function f : K → N is bijective if and only if there exists a function g : N → K
such that f ◦ g = idN and g ◦ f = idK , where idN : N → N and idK : K → K are
the identity functions.

Example 4.8. Here is a bijection f from K = {1, 2, 3} to N = {A,B,C}:
f(1) = A f(2) = C f(3) = B.

4.1. “Bijective proofs”. When we want to prove two numbers are equal, we
will often find that it is best to find sets of things that the two numbers count, and
exhibit a bijection between the sets. (So then they must have the same size, so then
the two numbers must be equal.)

For example, consider our two proofs of the fact (Proposition 3.5) that(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

One of them was just messing with factorials. The other one said that the left side
counts k-element subsets of {1, . . . , n}, whereas the other one does too. Why? The
first term,

(
n−1
k

)
, counts k-element subsets of an (n− 1)-element set, i.e. {2, . . . , n}.

The second term,
(
n−1
k−1

)
, counts (k − 1)-element subsets of an (n− 1)-element set,

again {2, . . . , n}, which are in bijection with k-element subsets of {1, . . . , n} that
contain 1. The second proof is a “bijective proof”.
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5. Towards inclusion-exclusion – counting surjections

Notation 5.1. For brevity, rather than writing {1, . . . , n} and {1, . . . , k} all
the time, we will write [n] and [k]. This is reasonably standard. Note that zero is
not included, and that [0] is the empty set ∅.

We have counted functions [k] → [n] (there are nk of them) as well as injective
functions ( n!

(n−k)! , assuming k ≤ n, and zero otherwise) and bijective functions (n!,

assuming n = k, and zero otherwise). What about surjective functions? These are
somewhat harder to count! Let’s define Surj(k, n) to be the number.

Example 5.2. n = 4, k = 2. We could put 3 balls in one box and 1 ball in the
other (8 ways). Or we could put 2 balls in each box (6 ways).

(Spends a bunch of time in lecture trying, and failing, to calculate Surj(k, n) by
our standard techniques. We can probably find one or two recursive ways to do it.)

6. Inclusion-Exclusion

Remark 6.1. 250 students are taking Combinatorics and 350 are taking Algebra.
How many students are taking at least one of the two? The answer could be
anywhere from 350 (if every Combinatorics student is taking Algebra) to 600 (if
no student is taking both). To get the right answer, we need to subtract off the
number of students taking both, to avoid double-counting them. Summarized:
|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2| .

What about |A1 ∪A2 ∪A3|? Concretely:
Suppose 250 students are taking Combinatorics, 300 students are taking Analysis,

and 350 students are taking Algebra. How many students total are taking at least
one of the three? To count, we could add 250+300+350 = 900, but we have clearly
overcounted, because some students got counted more than once.

How badly have we overcounted? Suppose there are 140 students in Com-
binatorics and Algebra, 225 students in Algebra and Analysis, and 175 students
in Analysis and Combinatorics. Furthermore, suppose 125 students are taking
all 3 modules. We have counted 125 students 3 times, and 15 + 100 + 50 =
140 + 225 + 175 − 3 · 125 = 165 students twice. Overall, we have overcounted by
165 + 125 · 2 = 415, so the total number of students is 900 − 415 = 485. This
consistent with the Venn diagram we can draw:

125

50

15 100

60 25

110

Comb Ana

Alg

Regrouping the terms above slightly, we had 900 − (140 + 225 + 175) + 125. We
tried to correct our overcount, but “overcounted” again in our correction!
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Theorem 6.2 (Inclusion-Exclusion Theorem). Let A1, . . . , Ar be sets. Then

|A1 ∪ · · · ∪Ar| =
∑

I⊆{1,...,r}
I ̸=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
Proof. We need to see why each element of A1 ∪ · · · ∪Ar gets counted exactly

once in total on the right side. Let J ⊆ {1, . . . , r} be the set of Ais containing
element x. (In other words, the set of modules student x is enrolled in.) Then x gets
counted as +1 in term I for all I ⊆ J with an odd number of elements, and x gets
counted as -1 in term I for all nonempty I ⊆ J with an even number of elements.
Overall, x gets counted(

|J |
1

)
−
(
|J |
1

)
+

(
|J |
1

)
−
(
|J |
1

)
+ · · ·+ (−1)|J|+1

(
|J |
|J |

)
times. This number is the same as(

|J |
0

)
+

|J|∑
k=0

(−1)k+1

(
|J |
k

)
=

(
|K|
0

)
+ 0|J|,

where the last equality is by expanding (−1 + 1)|J| using the binomial theorem.

Thus x gets counted altogether
(|J|

0

)
= 1 time. □

7. Application of inclusion-exclusion – counting surjections

Back to the problem of counting surjections [k] → [n]. In our earlier failed
attempt, we did come across the idea that it might be easier to count functions that
are not surjections. How can we break up this set as much as possible? How can a
function fail to be surjective? It must miss some element i ∈ [n] — so the set of
non-surjective functions is precisely the union, over i ∈ [n], of functions that miss i.
Define Ai to be the set of functions missing i.

Let’s try to apply inclusion-exclusion. Can we calculate |Ai|? Yes, we can — Ai

is just the set of functions [k] → [n]\{i} (with no surjectivity assumption required!),
so |Ai| = (n− 1)k.

We also need to calculate |Ai ∩Aj |. Can we do this? Again, yes — Ai ∩Aj is
the set of functions [k] → [n] \ {i, j}, so |Ai ∩Aj | = (n− 2)k.

Similarly we can calculate any term in the inclusion-exclusion formula:
∣∣⋂

i∈I Ai

∣∣ =
(n− |I|)k. Thus the number of non-surjections [k] → [n] is∑

I⊆[n]
I ̸=∅

(−1)|I|+1(n− |I|)k.

Subtracting from the total number of functions gives Surj(k, n):

Surj(k, n) = nk −
∑
I⊆[n]
I ̸=∅

(−1)|I|+1(n− |I|)k =
∑
I⊆[n]

(−1)|I|(n− |I|)k.

This is a very nice formula, but perhaps we don’t like the fact that it involves a
sum over a very large set. We can simplify by grouping terms with the same size I.
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Let’s do that:

Surj(k, n) =
∑
I⊆[n]

(−1)|I|(n− |I|)k =

n∑
m=0

∑
I⊆[n]
|I|=m

(−1)|I|(n− |I|)k

=

n∑
m=0

∑
I⊆[n]
|I|=m

(−1)m(n−m)k

=

n∑
m=0

(−1)m(n−m)k
∑
I⊆[n]
|I|=m

1

=

n∑
m=0

(−1)m(n−m)k
(
n

m

)
.

Let’s check:

Surj(4, 2) = 24
(
2

0

)
− 14

(
2

1

)
+ 04

(
2

2

)
= 16− 2 + 0 = 14.

Let’s also observe that if k = 1 and n > 1, then

0 = Surj(k, n) =

n∑
m=0

(−1)m(n−m)

(
n

m

)
.

Using
(
n
m

)
=
(

n
n−m

)
and the substitution j = n−m gives

0 = (−1)n
n∑

j=0

(−1)jj

(
n

j

)

— this gives a nice alternate proof to your homework question.

8. Counting set partitions: Stirling numbers

What if we count surjections, but with unlabelled boxes? This has a nice
interpretation, namely counting the ways of dividing [k] into n nonempty pieces.
These numbers S(k, n) are called the Stirling numbers of the second kind. On the
other hand, if we think through it carefully, every surjection gets counted exactly n!
times. So we have the formula:

S(k, n) =
1

n!

n∑
m=0

(−1)m(n−m)k
(
n

m

)
.

Remark 8.1. Another example where it is not obvious they are integers, or for
that matter nonnegative....
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Let’s write out the Stirling numbers in a triangle:

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

k = 1 1

k = 2 1 1

k = 3 1 3 1

k = 4 1 7 6 1

k = 5 1 15 25 10 1

k = 6 1 31 90 65 15 1

As with binomial coefficients, there are many observations one can make:

Proposition 8.2. S(k, n) = S(k − 1, n− 1) + nS(k − 1, n).

Proof. Does 1 ∈ [k] form a singleton block? If yes, there are S(k − 1, n− 1)
ways to partition the rest of the set. If no, removing 1 yields a partitions of
[k] \ {1} = {2, . . . , k} into n pieces, and 1 must have come from one of these
pieces. □

Remark 8.3. If we allowed empty boxes, we would be partitioning [k] into at
most n parts. I do not immediately know of a simpler formula than

∑n
i=1 S(k, i)

for this quantity though...

Notation 8.4. For k ≥ 0, define the Bell numbers Bk =
∑k

n=0 S(k, n). That
is, Bk is the number of ways to partition [k] into any number of parts.

Example 8.5. The first few Bell numbers are 1,1,2,5,15,52,203,877,4140,...

Proposition 8.6. Bk =
∑k−1

n=0

(
k−1
n

)
Bn.

Proof. Assignment 2. □

9. Not examinable: Application of inclusion-exclusion – counting
derangements

This section was not covered in lecture — I decided to only have one application
to inclusion-exclusion, namely counting surjections. We know that there are n!
permutations of {1, . . . , n}, i.e. ways of distributing n labeled balls in n labeled
boxes of capacity 1. Let us count permutations with the property that ball i is not
allowed to be in box i, for any i. These are called derangements.

Example 9.1. For n = 3, the derangements are 2|3|1 and 3|1|2. For n = 4, the
derangements are 2|1|4|3, 2|3|4|1, 2|4|1|3, 3|1|4|2, 3|4|1|2, 3|4|2|1, 4|1|2|3, 4|3|1|2,
4|3|2|1.

Actually, we will count permutations that are not derangements — that is
permutations for which ball i goes in box i for some i. Let A1 denote the set of
permutations for which ball 1 goes in box 1, A2 denote the set of permutations for
which ball 2 goes in box 2, and so on. We want to calculate |A1 ∪ · · · ∪An| .

By inclusion/exclusion, we should figure out the sizes of all possible intersections.
Indeed, we can see |Ai| = (n − 1)!, since we need to choose how the other n − 1
balls are arranged. Similarly |Ai ∩Aj | = (n− 2)!, and so on. We have

|A1 ∪ · · · ∪An| =
∑

I⊆{1,...,n}
I ̸=∅

(−1)|I|−1(n− |I|)!
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We can simplify this sum by grouping subsets I of the same size:

|A1 ∪ · · · ∪An| =
n∑

j=1

(−1)j−1

(
n

j

)
(n− j)!

Thus the number of derangements is

n!−
n∑

j=1

(−1)j−1

(
n

j

)
(n− j)! =

n∑
j=0

(−1)j
(
n

j

)
(n− j)!

= n!

n∑
j=0

(−1)j

j!

Remark 9.2. If n is large, the fraction of permutations that are derangements
is about 1/e. (The probability that if each person at a party takes a random coat
on their way out, nobody gets their own coat.)

10. Stars and bars

I briefly mentioned this problem in the first lecture. We have k unlabeled balls,
and we have n labeled boxes (of arbitrary capacity). In how many ways can we
distribute the balls?

Remark 10.1. Equivalent formulations: distributing k identical cookies among
n people, counting degree-k homogeneous monomials in n variables.

Example 10.2. k = 3, n = 3:

3|0|0 2|1|0 2|0|1 1|2|0 1|1|1
1|0|2 0|3|0 0|2|1 0|1|2 0|0|3

x3 x2y x2z xy2 xyz

xz2 y3 y2z yz2 z3

Remark 10.3. Note that we get a recursion Ck,n =
∑k

i=0 Ck−i,n−1.

Strategy: Redraw example.

Example 10.4. k = 3, n = 3:

∗ ∗ ∗ || ∗ ∗| ∗ | ∗ ∗||∗ ∗ | ∗ ∗| ∗ | ∗ |∗
∗ || ∗ ∗ | ∗ ∗ ∗ | | ∗ ∗|∗ | ∗ | ∗ ∗ || ∗ ∗∗

These are sequences of 5 symbols with two bars and 3 stars! That is, choose 3 stars
(and 2 bars) out of 5 slots.

Exercise 10.5. Write down a precise bijection between stars/bars sequences
and ball distributions.

Conclusion:

Proposition 10.6. There are
(
n+(k−1)

n−1

)
ways to distribute the balls.

Remark 10.7. The recursion above is the hockey stick identity!
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Remark 10.8. Suppose we want to make sure that each person gets a cookie.
(Surjections...) Then we simply start by giving each person a cookie, then carry on

as before with the remaining k − n cookies:
(
n+(k−n−1)

n−1

)
=
(
k−1
n−1

)
.

Exercise 10.9. Counting problem: k unlabelled balls in n labelled, each box
can only hold 1 ball, but I want no two adjacent boxes to have balls in them.

11. Generating Functions

We’re now introducing some sequences (and triangles) of special numbers. So
far, we’ve had explicit formulas for all of these (though this won’t be the case for
the next example...) In practice, we’ll often stumble across a new sequence that we
don’t understand yet. It would be nice to have a systematic way of studying these.
First, a note:

Remark 11.1. If you come across a sequence of integers and you want to know
more about it, there is an amazing resource called the Online Encyclopedia of Integer
Sequences (OEIS). (Don’t use it for the assignments unless told to; it will defeat
the purpose of some problems.)

However, the point of this section is a more mathematical way of studying infinite
sequences of numbers. The difficulty is that, being infinite, they are somewhat
difficult to carry around with you. For example, suppose you have two sequences
(maybe defined via different counting problems), and you suspect they are equal, but
can’t find a bijective proof. What do you do? You can compute a bunch of terms
and check they agree, but of course you can’t prove that two infinite sequences are
equal in this way.

It is therefore a good idea to find some more finite-looking way of encapsulating
the sequence. We will now introduce such a thing, called a generating function. Let
me naively rewrite my sequence 1, 1, 2, 5, 15, 52, 203, . . . of Bell numbers as if I were
in a calculus class:

1

0!
+

1x

1!
+

2x2

2!
+

5x3

3!
+

15x4

4!
+

203x5

5!
+ · · · .

This is a formal power series (where “formal” means we haven’t bothered to check
whether it has nonzero radius of convergence). You may ask why I’ve done this,
since it seems like we have not gained anything. You may, however, be intrigued to
know that the power series above is in fact the Taylor series (based at x = 0) for
the function ee

x−1. This should be (a) hugely surprising, and (b) a hint at a very
powerful tool – this simple function is a much easier object to remember than the
infinite sequence!

In fact generating functions are the beginning of a fascinating interplay between
analysis and combinatorics. Let’s formalize briefly.

Definition 11.2. Let (an)n≥0 be a sequence of numbers. The formal power
series

∞∑
n=0

anx
n
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is called the ordinary generating function of (an)n≥0, and the formal power series

∞∑
n=0

an
xn

n!

is called the exponential generating function of (an)n≥0.

Remark 11.3. The latter is called the exponential generating function because
the constant sequence an = 1 yields the function ex. Recall from calculus that the
ordinary generating function of this sequence is 1

1−x , as you can see by inspecting

the coefficients of (1− x)(1 + x+ x2 + x3 + · · · ).

I now need to convince you that generating functions are useful. I will do this
through a series of examples, beginning with this one.

Example 11.4. Let fn denote the nth Fibonacci number, defined by f0 = f1 =
1, and fn = fn−1 + fn−2 for n ≥ 2. The first few numbers are (starting with the
0th term): 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

Let’s see if we can discover a formula for the generating function F (x) of the
Fibonacci numbers:

F (x) = 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + 13x6 + 21x7 + · · · .

Note what happens when I multiply F (x) by x or x2:

xF (x) = x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · ·
x2F (x) = x2 + x3 + 2x4 + 3x5 + 5x6 + 8x7 + · · · .

Using the recursion we see that 1 + xF (x) + x2F (x) = F (x). We can also see this
in formulas, like this:

F (x) = 1 + x+
∑
n≥2

fnx
n = 1 + x+

∑
n≥2

(fn−1 + fn−2)x
n

= 1 + x+
∑
n≥2

fn−1x
n +

∑
n≥2

fn−2x
n

= 1 + x+ x
∑
n≥2

fn−1x
n−1 + x2

∑
n≥2

fn−2x
n−2

= 1 + x+ x
∑
n≥1

fnx
n + x2

∑
n≥0

fnx
n

= 1 + x+ x(F (x)− 1) + x2F (x) = 1 + xF (x) + x2F (x).

We can solve for F (x) to get F (x) = 1
1−x−x2 .

At this point, you could use the partial fractions to write F (x) = a
x−α1

+ b
x−α2

,

where α1, α2 are the roots of 1− x− x2. If you do this, then apply the geometric
series expansion to both terms, you’ll get an explicit formula for fn. I encourage
you to work through this.

There is one more thing I want to note about this example. We can write

1

1− x− x2
=

1

1− (x+ x2)
= 1 + (x+ x2) + (x+ x2)2 + (x+ x2)3 + · · · .

We should be able to see the Fibonacci numbers from this. Note (See Assignment
1 Problem 4) that fn is the number of sequences of 1s and 2s with sum n. For
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example, f5 = 8 because of the eight sequences:

11111 1112 1121 1211 2111 122 212 221

Let’s try to reconcile this counting interpretation with the expression

F (x) = 1 + (x+ x2) + (x+ x2)2 + (x+ x2)3 + (x+ x2)4 + · · · .

How could we get a contribution to the coefficient of x5 in F (x)? We could get it by
distributing out (x+ x2)3 = (x+ x2)(x+ x2)(x+ x2), by picking an x2 from two
factors and an x from the other. This resembles the sequences 122, 212, 221 above.
We could also get an x5 by distributing out (x+x2)4, picking an x2 from one factor,
and an x from the three other factors. The number of ways of doing so correspond
to the sequences 1112, 1121, 1211, 2111. Finally, we could get an x5 from expanding
(x+ x2)5, picking the x from all 5 factors — corresponding to the sequence 11111.
So we have a more conceptual explanation for why the counting problem fn should
yield the generating function 1

1−(x+x2) .

Over the next few lectures, we’ll try to become comfortable with this sort of
reasoning — i.e. understanding how the structure of a generating function can
correspond directly to a counting problem.

Example 11.5. Additional example — not covered in lecture: A popu-
lation of 50 frogs is introduced into a lake. The population grows by a factor of 4
every year. At the end of each year, 100 frogs are caught and removed. How many
frogs are in the lake after n years?

Let an denote the answer. We are given the recursion an+1 = 4an − 100, with
a0 = 50. From this you can easily calculate the first few values 50, 100, 300, 1100, 4300, . . ..
Perhaps with some work you can guess a formula and prove it by induction. (That
will certainly not be the case in some future examples.)

Let us see how to solve this in a systematic way (i.e. no guessing required) using
ordinary generating functions. Let A(x) =

∑∞
n=0 anx

n. Note that

∞∑
n=0

an+1x
n+1 =

∞∑
n=0

(4an − 100)xn+1

= 4x

( ∞∑
n=0

anx
n

)
− 100x

( ∞∑
n=0

xn

)

= 4xA(x)− 100x

1− x
.

(Note: The identity
∑∞

n=0 x
n = 1

1−x is familiar from calculus; you can argue it via

inspecting coefficients in (1− x)(1 + x+ x2 + x3 + · · · ).) What about the left side∑∞
n=0 an+1x

n+1? We have

∞∑
n=0

an+1x
n+1 = A(x)− a0.

We thus have

A(x)− a0 = 4xA(x)− 100x

1− x
.
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Solving for A(x),

A(x) =
a0

1− 4x
− 100x

(1− x)(1− 4x)
.

In some sense we have made progress; we have an explicit formula for A(x). However,
you might be unsatisfied with this, because we haven’t really got an answer to our
question; we need to find the coefficient of xn in the expression on the right. Let us
do so. The first term is

a0
1− 4x

= a0

∞∑
n=0

(4x)n =

∞∑
n=0

(50 · 4n)xn.

The second term requires slightly more work; I’ll deal with it via partial fractions,
which you may recall from calculus. We attempt to find constants a and b such that

a

1− x
+

b

1− 4x
=

−100x

(1− x)(1− 4x)

for all x. We need a(1− 4x) + b(1− x) = (a+ b) + (−4a− b)x = −100x. Thus we
need a = −b, giving a = 100/3 and b = −100/3. The second term in A(x) thus
becomes

100

3(1− x)
− 100

3(1− 4x)
=

100

3

( ∞∑
n=0

xn −
∞∑

n=0

4nxn

)

=
100

3

∞∑
n=0

(1− 4n)xn.

Putting it all together,

A(x) =

∞∑
n=0

(
50 · 4n +

100

3
(1− 4n)

)
xn.

We must have an = 50 · 4n + 100
3 (1− 4n) = 50

3 · 4n + 100
3 . (Exercise: Check that this

satisfies the initial condition and the recursion.)

Remark 11.6. When should I use the ordinary generating function vs. the
exponential generating function? The real answer is that either one, or both, or
neither, could give you the information you are looking for. (Usually what you’re
looking for is a relatively simple formula.) Generally, if the sequence grows very fast,
you are more likely to have a simple formula if you use the exponential generating
function.

12. Some generating functions related to previously seen counting
problems

Example 12.1. The binomial coefficients are the most basic combinatorial
objects in this module. We would like to write down a generating function for them,
but we have an immediate problem — they are not really a sequence, they are a
triangle. Let’s fix k and work with the infinite sequence

(
k
k

)
,
(
k+1
k

)
, · · · .

We want to give a simpler expression for

A(x) =

∞∑
n=0

(
k + n

k

)
xn.
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I’d like to do it in two different ways. First, we have

A(x) =

∞∑
n=0

(k + n)!

k!n!
xn.

Thus

(1− x)A′(x) = (1− x)

∞∑
n=1

(k + n)!

k!(n− 1)!
xn−1

=

∞∑
n=1

(k + n)!

k!(n− 1)!
xn−1 −

∞∑
n=1

(k + n)!

k!(n− 1)!
xn

=

∞∑
n=1

(k + n)

(
k + n− 1

k

)
xn−1 −

∞∑
n=1

n

(
k + n

k

)
xn

=

∞∑
n=0

(k + n+ 1)

(
k + n

k

)
xn −

∞∑
n=0

n

(
k + n

k

)
xn

= (k + 1)A(x) +

∞∑
n=0

n

(
k + n

k

)
xn −

∞∑
n=0

n

(
k + n

k

)
xn

= (k + 1)A(x).

Solving A′(x) = (k+1)
1−x A(x) has solutions of the form A(x) = c

(1−x)k+1 , and knowing

A(0) =
(
k
k

)
= 1 gives c = 1. (To convince yourself that I solved the differential

correctly, rearrange it to A′(x)
A(x) = (k+1)

1−x , and integrate both sides to get ln(A(x)) =

(k + 1) ln(1− x) + C.)
Second, and better, let’s use combinatorics. Recall (“stars and bars”) that(

k+n
k

)
is the number of ways to divide n cookies among k+1 people, or alternatively

the number of degree-n monomials in k + 1 variables. Consider the product

(1 + x1 + x2
1 + · · · )(1 + x2 + x2

2 + · · · ) · · · · · (1 + xk+1 + x2
k+1 + · · · ).

In the expansion of this product, every monomial in k + 1 variables appears exactly
once. Setting all variables x1, . . . , xk+1 equal to each other thus gives A(x). Thus
A(x) = (1 + x+ x2 + · · · )k+1 = 1

(1−x)k+1 .

Remark 12.2. We can also form a generating function in two variables:

∞∑
n=0

∞∑
k=0

(
k + n

k

)
xnyk =

1

1− x− y
.

Expanding in k gives

1

(1− x)− y
=

1

1− x

1

1− y
1−x

=
1

1− x
+

y

(1− x)2
+

y2

(1− x)3
+ · · ·

as expected.

Example 12.3. I claim that the Bell numbers (number of ways to partition the
set [n]) have exponential generating function ee

x−1. Let’s see why.
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On Assignment 2, you’ll prove Bn =
∑n−1

k=0

(
n−1
k

)
Bk. Let A(x) =

∑∞
n=0 Bn

xn

n! .
We have

A′(x) =

∞∑
n=0

Bn
xn−1

(n− 1)!

=

∞∑
n=0

n−1∑
k=0

(
n− 1

k

)
Bk

xn−1

(n− 1)!

=

∞∑
k=0

∞∑
n=k+1

(
n− 1

k

)
Bk

xn−1

(n− 1)!

=

∞∑
k=0

∞∑
n=0

(
k + n

k

)
Bk

xk+n

(k + n)!

=

∞∑
k=0

Bk
xk

k!

∞∑
n=0

xn

n!

= A(x)ex.

Thus A′(x)
A(x) = ex. Integrating both sides gives ln(A(x)) = ex + C, where C = −1 is

ensured by A(0) = B0 = 1. Thus

A(x) = ee
x−1.

13. Integer partitions

Let k ≤ n be positive integers. How many ways are there to divide n unlabeled
balls into k unlabeled boxes so that each box gets a ball. Now all that matters is
the numbers of balls each in box. This is the number of ways to write the integer
n as a sum of k positive integers (without caring about the order). We call this
number pk(n).

Example 13.1. There are 8 partitions of 10 into 3 parts:

8 + 1 + 1 7 + 2 + 1 6 + 3 + 1 6 + 2 + 2 5 + 4 + 1 5 + 3 + 2 4 + 4 + 2 4 + 3 + 3

Remark 13.2. Don’t get “set partitions” (of [n]) and “(integer) partitions” (of
n) confused!

Remark 13.3. If we allow any number of boxes, we get p(n), the number of
partitions of n

Example 13.4. There are 7 partitions of 5:

5 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 2 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1

There is no good formula for p(n) or pk(n)! But let us explore them a little bit
more. Here is the triangle for pk(n).



26 2. ENUMERATIVE COMBINATORICS: COUNTING THINGS

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

n = 1 1

n = 2 1 1

n = 3 1 1 1

n = 4 1 2 1 1

n = 5 1 2 2 1 1

n = 6 1 3 3 2 1 1

n = 7 1 3 4 3 2 1 1

n = 8 1 4 5 5 3 2 1 1

n = 9 1 4 7 6 5 3 2 1 1

n = 10 1 5 8 9 7 5 3 2 1 1

Here are the first several values of p(n):

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627

There are many observations we can make about the above:

Exercise 13.5. Show that along and down/right diagonal, the numbers are
eventually constant.

Exercise 13.6. Show that pk(n) = pk−1(n− 1) + pk(n− k). (We observed this
in lecture by taking each element, and subtracting the element above and to the
left.)

Remark 13.7. We counted “ordered partitions” (sometimes called compositions)
in the stars and bars section. This is the number of ways to distribute n cookies
among k people so that each person gets one, which was

(
n−1
k−1

)
. Note the unfortunate

reversal of notation — in that section we distributed k cookies among n people...

There is a useful way of drawing partitions. Here is the picture of the partition
15 = 8 + 3 + 3 + 1:

This is called a Ferrers diagram or Young diagram.

Remark 13.8. Many of the deep questions in combinatorics can be stated as
questions about these diagrams.

The diagrams reveal a useful hidden symmetry among partitions:

Definition 13.9. Let λ be a partition of n. The conjugate partition λT of λ is
the partition corresponding to the reflection of the Ferrers diagram of λ over the
(upper-left-to-lower-right) diagonal.

Example 13.10. 4 + 1 is conjugate to 2 + 1 + 1 + 1. 3 + 1 + 1 is conjugate to
itself.
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Here is an example of how you can use this symmetry, but there are many:

Proposition 13.11. The number of partitions of n into at most k parts is equal
to the number of partitions of n into parts of size at k.

Example 13.12. The partitions of 7 into at most 3 parts:

7 6 + 1 5 + 2 4 + 3 5 + 1 + 1 4 + 2 + 1 3 + 3 + 1 3 + 2 + 2

The partitions of 7 into parts of size at most 3:

3 + 3 + 1 3 + 2 + 2 3 + 2 + 1 + 1

3 + 1 + 1 + 1 + 1 2 + 2 + 2 + 1 2 + 2 + 1 + 1 + 1

2 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1

Proof of Proposition 13.11. The two sets of partitions are related by con-
jugation. □

Here is a slightly trickier bijective argument:

Proposition 13.13. The number of partitions of n into distinct odd parts is
equal to the number of self-conjugate partitions of n.

Exercise 13.14. Write down the n = 18 case. Answer:

17 + 1 15 + 3 13 + 5 11 + 7 9 + 5 + 3 + 1

and

9 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 8 + 3 + 2 + 1 + 1 + 1 + 1 + 1

7 + 4 + 2 + 2 + 1 + 1 + 1 6 + 5 + 2 + 2 + 2 + 1 5 + 4 + 4 + 4 + 1

Proof. Here is a picture – the details are an exercise. The two following
pictures get matched:

•

•

•

•

•
• • ••

••
••

•

□

We now start to get into some of the truly tricky combinatorial proofs. This is
in some ways the heart of combinatorics. One aspect of this field is that there are
simple problems for which extremely difficult, and elegant, arguments are needed.
Because the field is so old, many of these have been polished to the point that seem
clever to the point of miraculous. This can be quite daunting. As I have emphasized,
memorizing these proofs is of limited use. Our goal at the moment is practical:
to get you to come up with more and more subtle arguments. Nonetheless, it is
worthwhile to present some of the more beautiful arguments as inspiration. I’ll do
several of these examples over the next few lectures, while still leaving plenty of
good problems for the assignments.
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14. Deeper properties of partitions.

Proposition 14.1. The number of partitions of n into odd parts is equal to the
number of partitions of n into distinct parts.

Example 14.2. n = 8. Odd parts:

7 + 1 5 + 3 5 + 1 + 1 + 1 3 + 3 + 1 + 1 3 + 1 + 1 + 1 + 1 + 1 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Distinct parts:

8 7 + 1 6 + 2 5 + 3 5 + 2 + 1 4 + 3 + 1

I’ll give two proofs of Proposition 14.1. In order to do the first one, we need to
delve a little deeper into generating functions of partitions.

Example 14.3. What is the coefficient of xn in

(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · ) · · · (1 + xk + x2k + · · · )?

The answer is the number of ways to write n as a sum of the form a1 + 2a2 +
3a3 + · · · + kak. Such expressions are in bijection with partitions of n into parts
that are at most k — the bijection is that ai is the number of copies of i in the
partition. Restating what we’ve just observed:

∞∑
n=0

p≤k(n)x
n =

k∏
i=1

1

1− xi
.

As we are now interested in finding generating functions, this is now a rather
stunning observation. (Though I’ve mentioned that despite the nice expressions for
the generating function, there is no closed formula!) If we simply remove the limit
on k, we get the equally elegant

∞∑
n=0

p(n)xn =

∞∏
i=1

1

1− xi
.

Remark 14.4. Fun fact (Hardy-Ramanujan):

p(n) ∼ 1

4
√
3
exp

(
π

√
2n

3

)
.

The proof is by analyzing the behavior of the generating function, which actually
converges to a well-behaved function. (One actually proves this using complex
analysis.)

Let us try to apply the same reasoning to see some more generating functions.
What is the coefficient of xn in

(1 + x)(1 + x2)(1 + x3) · · ·?

It is the number of ways to write n as a sum of distinct parts. And what is

(1 + x+ x2 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · ) · · · .

It is the number of partitions of n into odd parts. But wait – I stated that the
number of partitions of n into distinct parts was supposed to be equal to the number
of partitions of n into odd parts. Here is the proof.



14. DEEPER PROPERTIES OF PARTITIONS. 29

First proof of Proposition 14.1. Using (1 + xi) = 1−x2i

1−xi , we have∑
n≥0

pdistinct(n)x
n =

∏
i≥1

(1 + xi) =
∏
i≥1

1− x2i

1− xi

=
(1− x2)(1− x4)(1− x6) · · ·
(1− x)(1− x2)(1− x3) · · ·

=
1

(1− x)(1− x3)(1− x5) · · ·
=
∑
n≥0

podd(n)x
n.

□

I did say I had a second proof. This one is bijective. Again, it is something you
might come up with after a long bit of thought.

Second proof of Proposition 14.1. Again, I will draw the bijection. Sup-
pose we have a partition of n into odd parts. We can draw its Young diagram,
but instead of doing so, we “fold” each row as we did in the last proof, then stack
corner-to-corner. For example, the partition 9 + 9 + 5 + 5 + 5 + 1 + 1 of 35 turns
into the following picture:

•

•

•

•

•

•
•

•
•

•
•

•

We now redraw the lines as follows:

•

•

•
•

•

•
•

•

•

•

The output is 11 + 8 + 7 + 6 + 3. It is left to check that the parts of the output
must be distinct. (Given a partition into distinct parts, how would you build the
last picture? What goes wrong if your partition does not have distinct parts?) □

In fact, there is an unrelated classic bijective proof that is “easier” to come up
with, which you can look up if interested.

Finally, I want to mention how one can obtain a beautiful recursion among
partitions. Consider the product ∏

i≥0

(1− xi).
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If the factors were 1 + xi, the coefficients would count the number of partitions of
n into distinct parts. Instead, it does that, but weights the partitions into an odd
number of distinct parts with a −1. That is, the coefficient fn of xn is the number of
partitions of n into an even number of distinct parts, minus the number of partitions
of n into an odd number of distinct parts.

One may show the following:

fn =

{
(−1)k n is of the form k(3k ± 1)/2

0 else
.

Let’s assume we’ve proved this, and come back to see how it is done in a minute.
Knowing this, we have shown∑

n≥0

p(n)xn

∑
m≥0

fmxm

 = 1.

We can get a recursion this way. The coefficient of xn on the left side must be zero,
but we can write this coefficient as:

0 = p(n)f0 + p(n− 1)f1 + p(n− 2)f2 + · · ·+ p(1)fn−1 + p(0)fn

= p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− p(n− 12)− p(n− 15) + · · ·

That is,

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · ·

(Note that the numbers 1, 5, 12, 22, . . . are the “pentagonal numbers” k(3k − 1)/2,
and the numbers 2, 7, 15, 26, . . . are the pentagonal numbers shifted by 1, 2, 3, 4, . . .,
i.e. k(3k + 1)/2.) This is the pentagonal number theorem, due to Euler. It is the
fastest known way to generate the sequence p(n).

Now let’s see why fn is as claimed. This is saying that for “most” n, there
is a bijection between partitions of n into an even number of distinct parts and
partitions of n into an odd number of distinct parts. Here is the bijection:

•

•

• •

Compare the lengths of (a) the bottom row and (b) the longest diagonal passing
through the rightmost box. If the row is strictly longer than the diagonal, pull out
the diagonal and place it below as a new row. (We still have distinct parts, and one
more.) If the diagonal is at least as long as the row, pull out the row and place it to
the right of the diagonal. (We still have distinct parts, and one fewer.)

•

•

•
•
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This is reversible (in fact, it is its own inverse), as in case (i), the new longest
diagonal will be at least as long as the new row, and in case (ii), the new longest
row will be longer than the diagonal. This seems like we are done – but where did
we use the hypothesis that n is not of the form k(3k ± 1)/2?

There are two partitions to which this does not apply. As an example with 3
rows, they are: 5 + 4 + 3 and 6 + 5 + 4. In the first case, both lengths are 3, but we
cannot move the bottom row up. In the second case, the diagonal has length 3, but
if we move it down, we get 5 + 4 + 3 + 3, which does not have distinct parts.

Each of these give an extra partition with k = 3 rows that is not matched up
via the bijection – partitions of 5 + 4 + 3 = 12 = k(3k − 1)/2 and 6 + 5 + 4 =
15 = k(3k + 1)/2 respectively. Generalizing, we get an extra partition with k rows
(contributing (−1)k) of n = k(3k ± 1)/2.

15. Catalan numbers

We will soon finish the part of the module devoted to counting problems; we
end with one last one, which you’ll explore a bit further on Assignment 3.

Definition 15.1. A triangulation of a regular n-gon is a collection of non-
crossing diagonals that divide the n-gon into triangles.

Here are the 14 triangulations of a regular hexagon:

Definition 15.2. The nth Catalan number Cn is the number of triangulations
of a regular (n+ 2)-gon.

The first few Catalan numbers are
n 0 1 2 3 4 5 6 7 8

C(n) 1 1 2 5 14 42 132 429 1430

Exercise 15.3. The Catalan numbers satisfy Cn =
∑n−1

i=0 CiCn−i. (Hint: Label
one edge of the (n+ 2)-gon, and keep track of which triangle of the triangulation
contains that edge.)

Exercise 15.4. Use the above recursion to show that the generating function
of the Catalan numbers is

A(x) =
∑
n≥0

Cnx
n =

1−
√
1− 4x

2x
.

(Hint: How would you expand out A(x)2?)
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Remark 15.5. In lecture I didn’t explain clearly why we get the negative branch
of the square root. The reason is that if we chose the positive branch, the limit
limx→0 A(x) would not exist. (Note that this isn’t 100% rigorous since we haven’t
been completely careful about how formal power series work. In particular, we can

make sense of the expression 1−
√
1−4x
2x as a formal power series, whereas we can’t do

so for 1+
√
1−4x
2x — though the latter can actually be written as the “Laurent series”

1
x − 1− x− 2x2 − 5x3 − · · · .)

Definition 15.6. A balanced sequence n opening and n closing parentheses is
a sequence such that every close-paren has a matching open-paren.

Here are the 14 balanced sequence of 4 pairs of parentheses:

(((()))) ((()())) ((())()) ((()))() (()(())) (()()()) (()())()

(())(()) (())()() ()((())) ()(()()) ()(())() ()()(()) ()()()()

Exercise 15.7. Prove that Cn counts the number of sequences of n opening
and n closing parentheses, such that every close-paren has a matching open-paren.
Do this either by proving that balanced sequence of parentheses satisfy the recursion
15.3, or by finding a bijection between balanced sequences and triangulations.

Exercise 15.8. Prove that Cn counts north-east lattice paths from (0, 0) to
(n, n) (as in Assignment 1) that never cross strictly above the diagonal. These are
called Dyck paths.

The Catalan numbers count a surprisingly large number of things. The textbook
Enumerative Combinatorics, Vol.2, by Richard Stanley, has a famous exercise that
gives 66 different counting problems for which the answer is the Catalan numbers.
Stanley later wrote a book including a vastly expanded list, with 214 different
counting problems for which the answer is the Catalan numbers.

There are now a few ways to obtain a formula for Cn.

(1) There is a nice proof that involves using the recursion above to find the
generating function∑

n≥0

Cnx
n =

1−
√
1− 4x

2x
.

One then Taylor expands to find a formula for Cn.
(2) Let’s do it bijectively:

Instead of counting balanced sequences of n pairs of parentheses, we count those
that are not balanced — let’s call these “bad sequences”. (We know that there are(
2n
n

)
sequences total.)
Given a bad sequence, it has some first unmatched close-paren. Consider the

following operation: for all parens strictly after the first unmatched close-paren, we
switch each paren, making every open-paren a close-paren and vice versa. Now, we
have n− 1 open-parens and n+ 1 close-parens.

Now, I claim that this operation gives a bijection between bad sequences of n
pairs of parentheses and all sequences of n− 1 open-parens and n+ 1 close-parens.
That is, I need to show the operation is reversible. I will describe the reverse
operation. Given a sequence of n− 1 open-parens and n+ 1 close-parens, it must
have an unmatched close-paren, since it has more close-parens than open-parens. It
therefore has a first unmatched close-paren. Do the same switching operation to
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everything strictly after this first unmatched close-paren. This is clearly the inverse
of the above operation, and clearly outputs a bad sequence since the first unmatched
close-paren is still unmatched.

This bijection shows that there are
(

2n
n−1

)
bad paths. Thus

Cn =

(
2n

n

)
−
(

2n

n− 1

)
=

2n!

n!n!
− 2n!

(n− 1)!(n+ 1)!

=
2n!(n+ 1− n)

n!(n+ 1)!

=
2n!

n!(n+ 1)!
=

1

n+ 1

(
2n

n

)
.





CHAPTER 3

Graph Theory

1. Motivation

On a map, different countries or regions are often shaded with different colours
in order to make the borders easy to see. For example, here is a map I found online
of the regions of the UK.

Note that this map has been coloured with 7 colours (including the ocean). Let’s
focus on the main island (Britain). Does it really need 6 colours, or could we colour
it with fewer? We can convince ourselves that it is impossible to colour with 3
colours, and that it is possible to colour it with 4.

At least as early as the 1850’s, mathematicians were aware of the question: Can
we colour every map with at most four colours? (One has to give a proper definition
of what counts as a map – an important caveat is that regions are not allowed to
have two separate pieces.) For over 120 years, nobody knew the answer, though
many mathematicians (including some very famous ones) gave false proofs.

One conceptual breakthrough required is that the shape of the countries is
irrelevant — the only information about the map that we need is which countries
are adjacent each other. Graphs are a fundamental mathematical object designed to
capture the concept of adjacency. We replace each region of our map with a vertex,
and if two regions are adjacent, we draw an edge between the two vertices.

There are a few subtleties; for example, adjacent has to mean that they cannot
just touch at a single point. This guarantees that I can draw the graph without
having any of the edges cross each other. Also I’ve drawn two edges between Anglia
and Southeast England since they touch twice.

35
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1

2

3

4

567

8

9

1011

Now I have turned my problem into combinatorics, since the graph contains
finite data: A finite set of vertices, and a finite set of edges. (The shape of an edge
is not part of the data — only which two vertices it connects.) The question now
becomes:

Let G be a graph that can be drawn in the plane with no crossing edges (i.e. G
is planar — we’ll discuss this much more later). Then is it possible to colour the
vertices with 4 colours such that if two vertices are adjacent (connected by an edge),
then they get different colours?

The answer is yes! This is the Four colour Theorem, proved by Appel
and Haken around 1976. This proof was controversial, as it involved extensive
case-by-case checking (1834 cases) that could not be done by hand, but had to be
verified by computer. Even today, no non-computer-assisted proof is known. (The
validity of the computer-assisted proof has been thoroughly checked by many people
though.)

Graphs turn out to be a very versatile concept, and they are used to model all
sorts of phenomena. The rest of the module will be spent on the theory of graphs —
a very broad field containing a huge number of different types of interesting problems.
(Relevant future modules include MA252 Combinatorial Optimization and MA4J3
Graph Theory.) We will however have time to introduce many of most ubiquitous
graph-theoretic problems/ideas, and to prove a bunch of interesting things.

2. The language of graphs

Formally:

Definition 2.1. A graph (or simple graph) G = (V,E) is

• a set V , whose elements are called the vertices of G, and
• a set E of unordered pairs of distinct vertices, whose elements are called
the edges of G.

Here is an example:

•1 •2

•4

•3

Here V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {2, 4}, {3, 4}}. (Vertices should always
be labeled!) While “infinite graphs” are also important in some applications, most
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graphs we see will have finite vertex and edge sets; we will assume this is the case
unless otherwise specified.

As you see from the definition, a graph only encodes “connectivity”, e.g. the
previous graph could also be drawn in the following ways, and it is the same graph:

•1•2

•4

•3

•1 •
2

•
4

•
3

For now, we do not allow duplicate edges and loops, as in:

•1 •2

•4

•3

Occasionally, however, we will need to do so — we will always be careful to specify,
and will refer to this as a multigraph to avoid confusion. In this case we would
widen the definition of E to be a multiset, where the two elements of an edge need
not be distinct.

It is confusing to choose a convention that is at odds with half of the literature
— so instead, I will just try to be very clear, in every scenario, about what I mean.
Luckily, for most of our purposes, we will only need to mention simple graphs – this
is because simple graphs really are all about encoding the concept of adjacency,
whereas duplicate edges and loops don’t have any bearing on the question of whether
two vertices are adjacent.

Here is a bit of terminology that you need to now internalize:

Definition 2.2. Let G = (V,E) be a graph.

• If e ∈ E contains v, we say e is incident to v, or v is an endpoint of e.
• If v1, v2 ∈ V are vertices such that {v1, v2} ∈ E, we say v1 and v2 are
adjacent (or are neighbours).

• For v ∈ V, the number of edges incident to v is called the degree deg(v) or
valence val(v) of v.

Definition 2.3. A graph is called k-regular if every vertex has degree k. (Or
just regular if it is k-regular for some k.)

Example 2.4. In the graph below, vertex 1 has degree/valence 1, vertex 2 has
degree 3, and vertices 3 and 4 have degree 2.

•1 •2

•4

•3

Graphs are a very rich structure, and graph theory forms a huge part of modern
mathematical research. Unlike in the first part of the module, where we solved a
range of somewhat-disparate counting problems (though we did see many recurring
themes), in this part of the module we really will build more of a theory, and try to
gain an intuition for how graphs can and cannot behave. We will also see many more
examples very soon. To give you a taste of how one might start proving theorems
about graphs, let us observe:

Proposition 2.5 (Degree-sum formula). Let G = (V,E) be a graph. Then∑
v∈V deg(v) = 2 |E| . In particular, the number of odd-degree vertices of G is even.
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Example 2.6. We had 2 such vertices in the example, namely 1 and 2.

•1 •2

•4

•3

Proof of Proposition 2.5. Consider
∑

v∈V deg(v). Each edge contributes
exactly 2 to this sum, i.e.

∑
v∈V deg(v) =

∑
e∈E 2 = 2 |E|. Thus the left side must

be even, from which the statement follows. □

(If you like, we just counted the size of the set H = {(v, e) ∈ V × E :
e incident to v} in two different ways. H is sometimes called the incidence set
of G.)

Here are a few of the most basic graphs.

• The complete graph on n vertices, denoted Kn, is the graph (V,E) where

V = [n] and E =
(
[n]
2

)
, where

(
[n]
2

)
is (new notation for) the set of 2-element

subsets of [n]. That is, all possible edges are drawn in, so any two vertices
are adjacent.

• The empty graph on n vertices has n vertices and no edges.
• The path graph on n vertices, denoted Pn, is the graph

•
1

•
2

•
3

•
4

•
5

· · · •
n− 1

•
n

• The cycle graph on n vertices, where n ≥ 1, denoted Cn, or n-cycle, is the
graph

•
1

•
2

•
3

•
4

•
5

· · · •
n− 1

•
n

(We could draw it as a regular n-gon.)
• This is not an example, but a way of generating examples. The research
area of Random Graph Theory is currently quite active. As an example,
take n vertices, and for each pair, flip a coin to determine whether or
not to draw an edge. (Or better yet, draw an edge with some probability
0 ≤ p ≤ 1.) What is the probability that the resulting graph will “contain
a K3”? (I.e. what is the probability you can find 3 vertices that are all
connected to each other?) This will be a function of n and p – questions
like this often have interesting applications, since lots of interactions can
be modeled by random graphs.

(Can you think of other algorithms to generate random graphs?)

We’ll see lots more examples!

3. The language of graphs, continued

Definition 3.1. • Two (simple) graphs G = (V,E) and G′ = (V ′, E′)
are isomorphic if there exists a bijection ϕ : V → V ′ such that {v1, v2} ∈ E
if and only if {ϕ(v1), ϕ(v2)} ∈ E′. (That is, if they differ only in the naming
of the vertices.)

• Let G = (V,E) and H = (V ′, E′) be simple graphs, where V ′ ⊆ V . We say
H is a subgraph of G if for all edges {v1, v2} ∈ E′, we have {v1, v2} ∈ E.
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• Let G = (V,E) be a connected graph, and let H = (V ′, E′) be a subgraph
(so V ′ ⊆ V ). We say H is a spanning subgraph (or H spans G) if V ′ = V.

• For a graph G = (V,E) and a subset V ′ ⊆ V, the subgraph of G induced by
V ′ is the subgraph with vertex set V ′ and edge set E′ = {e ∈ E : e ⊆ V ′}.
That is, the set of all edges between vertices in V ′.

Remark 3.2. The problem of determining whether two graphs G and G′ are
isomorphic is “algorithmically difficult”. There is a brute-force algorithm — for
each bijection between their vertex sets, see if the edge sets match — but it is not
known whether there is an “efficient” algorithm, i.e. one that returns an answer in
an amount of time that is a polynomial function of |V | .

Sometimes, we will care about specific bijections/injections, not just whether
one exists. For example, an automorphism of a graph G is an isomorphism from G
to itself (a permutation of V that preserves the graph structure). Automorphisms
of a graph form a group Aut(G).

Example 3.3. In our running example, what are the automorphisms? There is
the identity, and there is the bijection (1, 2, 3, 4) 7→ (1, 2, 4, 3).

•1 •2

•4

•3

Definition 3.4. Let G and G′ be graphs. We say G′ contains G if G is
isomorphic to a subgraph of G′.

Example 3.5. The graph below contains two paths from vertex 1 to vertex 4.
It contains a 3-cycle, but does not contain a 4-cycle.

•1 •2

•4

•3

Definition 3.6. A graph G = (V,E) is connected if for every pair v1, v2 ∈ V,
there is a path in G from v1 to v2. (Usually a good property if your graph
represents, e.g., an airline, or the internet.) The maximal connected subgraphs of a
(disconnected) graph are called its connected components.

Remark 3.7. A path in G from v1 to v2 is formally defined above, meaning
you can walk from v1 to v2 along edges of G without repeating vertices (or, therefore,
edges). We should note however, that this is not a stronger condition than being
able to walk from v1 to v2 with possibly repeated vertices. Given such a walk, if you
come to a vertex that will be visited multiple times, just skip the intervening steps.

Note: A walk is used to mean “path with possibly repeated vertices/edges.”

Example 3.8. The following is not connected:

•1 •2

•4

•3

Exercise 3.9. Find a connected 4-regular graph with 6 vertices. (Can you find
one where the edges don’t cross each other?)
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4. Basic measurements of graphs

Definition 4.1. An independent set of vertices in a graph is a subset of the
vertices such that no two elements are adjacent. The vertex independence number
indV (G) of G is the cardinality of the largest independent set in G.

Exercise 4.2. Compute indV (G) for G the Petersen graph, below:

Definition 4.3. A matching in a graph is a subset of the edges such that
no two elements share an endpoint. The matching number indE(G) of G is the
cardinality of the largest matching in G. If there exists a matching using all vertices
of G, it is called a perfect matching.

Exercise 4.4. Compute indE(G) for G the Petersen graph.

Definition 4.5. An colouring of a graph G = (V,E) with colour set C is
a function f : V → C such that for every edge e of G, the endpoints of e are
different colours (i.e. if the endpoints are called v1 and v2, then f(v1) ̸= f(v2)).
The chromatic number χ(G) of G is the cardinality of the smallest colour set for
which there exists a colouring of G.

Exercise 4.6. Compute χ(G) for G the Petersen graph.

Definition 4.7. The distance between two vertices v1, v2 in a graph G = (V,E)
is the length of the shortest path containing v1 and v2. The diameter diam(G) of G
is the maximum distance between two vertices in G.

Exercise 4.8. Compute diam(G) for G the Petersen graph.

Definition 4.9. The girth girth(G) of a graph G = (V,E) is the length of the
shortest cycle in G.

Exercise 4.10. Compute girth(G) for G the Petersen graph.

5. Trees

Definition 5.1. A graph G is called acyclic if it does not contain any cycles.
That is, there is no subgraph isomorphic to Cn for any n ≥ 1. Our running example
is not acyclic, since it does contain a 3-cycle with vertices 2,3,4.

•1 •2

•4

•3

In particular, G cannot contain loops or double edges: acyclic graphs are simple.
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Definition 5.2. A connected acyclic graph is called a tree. (A disconnected
acyclic graph, i.e. a union of trees, is called a forest.)

Remark 5.3. Slightly different from the computer science version of a tree,
which might include a specified vertex called the root. We will refer to that as a
rooted tree.

Example 5.4. Here are some trees:

Trees are going to be a huge part of the rest of the module. We will next prove
some basic theorems about trees. But first, a counting problem.

Example 5.5. How many trees are there with vertex set [6]?

We can see the different types of trees in the figure about, and you can convince
yourself that these are all the possibilities. We need to count how many ways there
are to label the vertices with 1, . . . , 6 that give different trees. Check yourself: for
the six types we get

360 + 360 + 360 + 90 + 120 + 6 = 1296.

Theorem 5.6. If G = (V,E) is a tree, and e = {v1, v2} ∈ E is an edge, then
G′ = (V,E \ e) is not connected. (“Cutting any edge disconnects the tree.”)

Proof. Suppose G′ is connected. Then there exists a path P from v1 to v2 in
G′. As P is contained in G′, it does not include the edge e; adding the edge e yields
a cycle contained in G, a contradiction. □

In fact, trees are exactly the “edge-minimal connected graphs”:

Theorem 5.7. Conversely, if G is connected, and cutting any edge disconnects
G, then G is a tree.

Proof. Suppose G is connected, and cutting any edge disconnects G. We
must show that G is acyclic. Suppose for contradiction that G contains a cycle C.
Cut any edge e of C. By assumption, this disconnects G, yielding a graph G′, so
there exist v1, v2 not connected by a path in G′. In other words, any path from v1
to v2 in G must have included e. But this is impossible – take such a path, and
replace e with “going around C the long way”. This yields a path from v1 to v2 that
does not contain e. (Technically this could be a walk from v1 to v2, as our original
path may have already used vertices of C, which would now be repeated, but as
observed in Remark 3.7, it can be easily turned into a path by deleting redundant
segments.) □
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Based on the examples above, let us conjecture:

Conjecture 5.8. A tree with n vertices has n− 1 edges.

In order to prove this, we would like to induct as follows. A leaf of a tree is a
degree-1 vertex. Given a tree, we would like to remove a leaf and its adjoining edge,
then appeal to the inductive hypothesis.

Theorem 5.9. A (finite) tree with at least two vertices has at least one leaf.
(In fact, at least two!)

Proof. Idea: Sitting in the middle of a tree, how would you find a leaf? You
would keep walking until you hit a dead end. Your path cannot cycle, so you must
hit a dead end, and that dead end would have to be a leaf.

This is almost a proof, but we want to be a bit more careful about what it
means to “keep walking until you hit a dead end”.

By assumption G has at least two vertices, so G contains at least one path. Let
P be a maximal path in G — a path that is not contained in any other path. (Such
a path must exist, as otherwise one could keep building paths with successively
more and more vertices — but we have only finitely many vertices.) The path P
has two endpoints, call them v1 and v2. As they are the endpoints of P , we have
deg(v1),deg(v2) ≥ 1. We claim that v1 and v2 are leaves.

Suppose not, e.g. suppose deg(v1) ≥ 2. Then there is some edge e′ ̸∈ P incident
to v1. Let v

′ denote the other endpoint of e′. As P is maximal, we know that we
cannot extend P by adding e′ to get a longer path. That is, we know that v′ is
already in P . This gives us a cycle: First, traverse P from v′ to v1, then take the
edge e′. This contradicts the assumption that G is a tree, hence acyclic. Thus v1
and v2 are leaves. □

Remark 5.10. An infinite tree can have 0 or 1 leaves...

Now we can prove:

Theorem 5.11. A tree with n vertices has n− 1 edges.

Proof. Let G be a tree with n vertices. If n = 1, an edge would have to be a
loop, which are not allowed as G is acyclic. Thus there are no edges, so the base
case holds.

If n > 1, let v be a leaf of G, with sole incident edge e. Let G′ be the graph
obtained by removing v and e. Certainly G′ is still connected, and still acyclic. By
the inductive hypothesis, G′ has n− 1 vertices and n− 2 edges. Thus G has n− 1
edges. □

What about the converse? Try to draw a graph with n vertices and n− 1 edges
that is not a tree — it will end up not being connected...

Theorem 5.12. A connected graph with n vertices and n− 1 edges is a tree.

We can prove it using the characterization of trees as minimal connected graphs.

Proof. Let G be a connected graph with n vertices and n− 1 edges. We want
to start deleting edges (but not vertices), if possible without disconnecting the graph,
until we cannot anymore. To use the better logic we established in Theorem 5.9, we
observe that G has a connected spanning subgraph — namely, G itself. Among all
connected spanning subgraphs, we then choose one, call it H, with as few edges as
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possible — this must be possible since G has finitely many edges. By construction,
if we delete an edge of H, it becomes disconnected, so by Theorem 5.7, we know H
is a tree. By Theorem 5.11, H has n− 1 edges. Since H was obtained from G by
deleting edges, we conclude that actually H = G. Thus G is a tree. □

Remark 5.13. If G has n vertices and fewer than n − 1 edges, G cannot be
connected. If it were, we would go through the exact proof above, but find that H
has more edges than G, a contradiction.

Alternatively, and intuitively, we can see this by starting with n vertices and
no edges, then adding edges one by one. We start with n connected components.
Each added edge reduces the number of connected components by at most 1. In
particular, if G has n vertices and k edges, then G has at least n − k connected
components. The minimum number of connected components, i.e. n−k, is precisely
the case where G is acyclic, i.e. a forest.

To summarize, we have:

Theorem 5.14. Let G = (V,E) be a graph. The following are equivalent:

(1) G is a tree — that is, G is connected and acyclic.
(2) G is minimally connected — that is, G is connected, but removing any

edge disconnects G.
(3) G is connected and satisfies |E| = |V | − 1.

In fact, we could add to this list the statement “Any two vertices in G are
connected via a unique path” — see Assignment 3.

Trees will come back regularly for the rest of the term; among other things,
we’ll see some interesting counting problems involving them. For now, we note a
few useful definition/observations:

Observation 5.15. Given a tree T , and a vertex v of T , we may give T the
structure of a directed graph (where we give each edge a direction) by assigning all
directions to point “away” from v. Precisely, let e be an edge, connecting vertices
v1 and v2. There are unique paths from v to both v1 and v2, and exactly one of
them (say from v to v2) contains e. Then e is given direction v1 → v2. (This is the
process of “choosing a root” for T .)

Observation 5.16. Every connected graph G contains a spanning tree T . We
already saw the argument — just delete edges, keeping the graph disconnected, until
you cannot do so anymore. More precisely, let T be any minimal connected spanning
subgraph.

6. More on colourings of graphs

Recall that a colouring of a graph is an assignment of a colour to each vertex
such that no edge connects two vertices of the same colour. A k-colouring is a
colouring wth k colours. Recall also that the chromatic number χ(G) of a graph G
is the fewest colours needed for a colouring.

Remark 6.1. Graph colouring is often used to model scheduling problems.
Suppose you have n committees, each of which needs to have a 1-hour meeting.
Some of the meetings cannot overlap, since the committees might overlap. Draw a
graph with n vertices, where edges correspond to overlapping committees. Then
“colour” the graph with time slots. The colouring condition ensures that no two
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overlapping committees meet in the same time slot. The chromatic number is the
smallest amount of hours in which the committees can meet.

There are many many more applications — your committee meetings could e.g.
be replaced by tasks to be performed by a parallel computer, some of which require
access to the same file, so shouldn’t be done simultaneously.

Here is an observation that gives us an easy upper bound on the chromatic
number of G.

Observation 6.2. If the vertices of G are coloured with k colours, and there exist
two colour classes with no edges between them, then we could just merge those colours
to get fewer. So if G is coloured with χ(G) colours (as few as possible), we must have

that any two colour classes have an edge between them. This gives
(
χ(G)
2

)
edges – in

particular G must have at least this many edges. That is, |E| ≥ 1
2χ(G)(χ(G)− 1).

Rearranging this proves:

Proposition 6.3. If G has m edges, then χ(G) ≤ 1
2 +

√
2m+ 1

4 .

Here is another one:

Proposition 6.4. χ(G) ≤ (maxv∈V deg(v)) + 1.

Proof sketch. Colour the vertices in some order – at each step, there is an
available colour. □

Definition 6.5. A graph that has a 2-colouring is called bipartite. That is, G
is bipartite if χ(G) ≤ 2. Sometimes G is called k-partite if χ(G) ≤ k.

Example 6.6. The complete bipartite graph Ka,b has vertex set V = V1 ⊔ V2,
where |V1| = a, |V2| = b, and there is a single edge connecting every vertex of V1 to
every vertex of V2. (So ab edges altogether.) These will show up quite a bit.

One can also define the complete multipartite graph Ka1,a2,...,ar , in which
vertices are divided into partite sets of sizes a1, . . . , ar, and vertices are connected
by an edge if they are in different partite sets. E.g. here are K3,3 and K2,2,2:

Graphs that are bipartite/2-colourable form an important subclass of graphs
that show up in lots of applications – we’ll see some later. For this reason, I’d like
to prove an equivalent condition for bipartiteness:

Theorem 6.7. A graph is bipartite if and only if it contains no odd-length
cycles.
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Example 6.8. This is clearly a necessary condition for bipartiteness — a
bipartite graph is 2-colourable by definition, and in a 2-colouring, the vertices along
any cycle would have to alternate red-blue-red-blue. Therefore the cycle could not
have odd length.

The proof will be our first usage of the notion of a spanning tree – recall that if
G is a connected graph, then it has a spanning tree, i.e. a subgraph of G that is a
tree and contains all vertices of G.

proof of Theorem 6.7. As noted, one direction is easy. For the other, sup-
pose G contains no odd cycles. We will assume G is connected – if not, we can
apply the same argument separately to each connected component.

Since G is connected, G has a spanning tree, call it T . Choose any vertex v0 of
T . By one of our theorems about trees, for each vertex v of T , there is a unique
path in T from v to v0; furthermore we can assign a direction arrow to each edge so
that for all v, the unique path from v to v0 is the unique path starting at v that
points against the arrows. We colour each vertex v as follows: red if the unique
path from v0 to v has even length, and blue if it has odd length. We have now
coloured all vertices of G, since T is a spanning tree.

We next show that we have given a valid colouring of G. We must check that
for every edge of G, the endpoints consist of one red vertex and one blue vertex.
First, we check this for edges in T , then for edges not in T .

Let e be an edge in T . The edge was assigned a direction arrow, “pointing away
from v0”. Let v1 be the endpoint of e into which the arrow points, and v2 the other
endpoint. Then the path from v1 to v0 starts with the edge e — by uniqueness,
it then proceeds along the unique path from v2 to v0. Thus these paths differ in
length by exactly 1, so they have different colours.

Next, let e be an edge not in T , and let v1, v2 be its endpoints. Suppose for
contradiction they are the same colour. Consider the unique path P in T from v1 to
v2. Since P contains only edges in T , we know that along P , the colours alternate.
The two endpoints are the same colour, so P has an even number of edges. Adding
in the edge e gives a cycle with an odd number of edges, a contradiction. Thus v1
and v2 are different colours. Since this argument works for any edge of G not in T ,
we conclude that we have given a valid 2-colouring of G. □

Example 6.9. The Kneser graph Kn(n, k) is defined as follows. The vertices of
Kn(n, k) are the k-element subsets of [n]. Two vertices are connected by an edge if
they are disjoint.

Exercise 6.10. Draw Kn(5, 2). What does Kn(2k, k) look like? How many
edges does Kn(n, k) have?

Exercise 6.11. Show Kn(n, k) can be coloured with n− 2k + 2 colours.

Kneser (1956) conjectured that χ(Kn(n, k)) = n − 2k + 2. This conjecture
remained open for 20 years before Lovász found a proof using a theorem from
topology. Let me sketch the proof in the case of Kn(5, 2). (Note that we have already
showed this graph is not bipartite!)

Proof Sketch, not examinable. Suppose Kn(5, 2) has a 2-colouring. Posi-
tion the elements of [5] on a sphere, with no three lying on a great circle. I define
three subsets of the sphere, which possibly overlap. The subset R consists of all
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points P such that the hemisphere centered at P contains two elements of [5] with
the corresponding vertex of Kn(5, 2) coloured red. The subset B consists of all
points P such that the hemisphere centered at P contains two elements of [5] with
the corresponding vertex of Kn(5, 2) coloured blue. The subset U consists of all
points of the sphere not in R or B. Note that the hemisphere centered at a point of
U contains at most 1 element of [5]. We now quote:

Theorem 6.12 (Borsuk-Ulam). If a sphere is expressed as a union of three
overlapping (open or closed) sets, then one of these sets contains a pair of antipodal
points.

Thus R, B, or U contains a pair of antipodal points. If U contains a pair of
antipodal points, then 3 elements of [5] are on the complementary great circle,
contradicting our assumption. Thus R or B contains a pair of antipodal points.
Suppose it’s R. Then I can find two elements of [5] in one hemisphere whose vertex
is red, and two elements of [5] in the opposite hemisphere whose vertex is red. But
these 2-element subsets of [5] must be disjoint, a contradiction. □

7. Not examinable: indV (Kn(n, k)) and the Erdős-Ko-Rado Theorem

We want to find an independent set of vertices in Kn(n, k) that is as large as
possible. This is a collection of k-element subsets of [n], no two of which are disjoint.
Equivalently, we have n people, and we want to form committees, each of which
has k people. A person is allowed to be on multiple committees, and we impose
the rule that any two committees must have a common member. What is
the maximum number of (distinct) committees can we form this way? (Clearly the
answer is at most

(
n
k

)
.)

Example 7.1. If n < 2k, then the condition is trivial — any two k-element
subsets of [n] intersect — so the answer is just

(
n
k

)
.

Example 7.2. If k = 2 and n = 4, here are two sets of committees:

{{1, 2}, {1, 3}, {1, 4}} {{1, 2}, {1, 3}, {2, 3}}.
You can convince yourself that you can’t add any elements to either of these. With
slightly more thought, you can convince yourself that any 4 2-element subsets of [4]
will have a disjoint pair. So 3 is the answer when k = 2 and n = 4.

Example 7.3. Extrapolating from the first set of committees above, we can
just put one (busy) person in every committee — then the condition is guaranteed,
and we can make

(
n−1
k−1

)
committees. But can we do better?

Theorem 7.4 (Erdös-Ko-Rado 1938, proof due to Katona 1972). This is the
best we can do, i.e. indV (Kn(n, k)) =

(
n−1
k−1

)
if n ≥ 2k.

Proof. It is not at all obvious how to approach this problem. It just seems
like there are too many possibilities. Indeed, the original proof, which was inductive,
was much more complicated than the one I’m going to present.

Suppose we have formed committees A1, . . . , Ar ⊆ [n]. If we seat the n people
around a circular table, we can ask ourselves, “Is committee Ai together?” (“To-
gether” means consecutively seated.) For each seating, we count the number of
committees that are together, then add that number up over all possible seatings.
(We’ll count two seatings as the same if they differ by rotation — there are (n− 1)!
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seatings altogether.) Let’s call this sum X. It is not very well-motivated yet, but I
will compute it in two ways.
Way 1 — consider each committee separately: Choose a committee Ai. In
how many seatings is Ai together? There are k! ways to order the members of Ai,
then (n− k)! ways to order everyone else. This gives a contribution of k!(n− k)!
from committee Ai, and adding up over all committees we get X = r · k!(n− k)!.
Way 2 — consider each seating separately: If we choose a seating, let us count
how many committees can possibly be seated together. Since any two committees
have to overlap, they can’t be seated at very different parts of the table — in
particular, they must be shifted from each other by < k elements. That is, there
are at most k committees together in any given seating. Summing over the (n− 1)!
seatings, we have X ≤ k · (n− 1)!.

Putting it together, we have:

r · k!(n− k)! = X ≤ k · (n− 1)!

r ≤ k · (n− 1)!

k!(n− k)!
=

(
n− 1

k − 1

)
.

□

8. Graph traversal problems: Eulerian Graphs

An problem often credited as the origin of graph theory is the problem of the
bridges of Königsberg. Is it possible to go on a walk in Konigsberg that crosses each
bridge exactly once? The question and its solution were presented by Euler.

It is a little bit hard to see where the bridges are – here is an equivalent picture:

island islandriver

This is equivalent to walking on the following non-simple graph:
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• •

•

•

(Note: In this section we can choose to allow graphs with multiple edges between
the same pair of vertices, and everything works out.)

Definition 8.1. An Eulerian circuit of a graph G is a closed walk (ends where
it starts) that traverses each edge exactly once. If an Eulerian circuit of G exists,
we say G is Eulerian.

Remark 8.2. In order for an Eulerian circuit to exist, we need every vertex to
have even degree. (It also must be connected.) Note that this immediately rules out
the Königsberg example! Now try drawing such a graph, and see if you can draw
an Eulerian circuit.

Remark 8.3. If, as in the original example, we do not require that the circuit
begins where it starts, we instead get the condition that every vertex other than
the starting and ending vertices must have even degree. (This still rules out
the Königsberg graph.)

Theorem 8.4 (Euler). A connected graph G is Eulerian if and only if every
vertex has even degree.

Example 8.5. Here is a graph — let us see what happens if we take a walk...

We can’t get “stuck” unless we reach the vertex where we started! In which case,
we should be able to lengthen our circuit by taking a detour at some point.

Proof of Theorem 8.4. Suppose every vertex of G has even degree. Let W
be the longest walk in G that uses no edge more than once. Let v0 be the last vertex
of W .

Note that W must traverse every edge incident to v0, as otherwise we could
extend W . On the other hand, v0 has even degree, so W leaves v0 the same number
of times it arrives at v0. To account for the last arrival, W must start at v0.
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Suppose W is not an Eulerian circuit. Then there exists an edge e of G not
traversed. We claim we can find such an edge that is incident to a vertex in W . To
see this, if e is not already incident to W , take a path P from either endpoint of e
to a vertex in W . The last edge of P before it hits W , call it e′, is not traversed in
W , but is incident to a vertex in W (say at a vertex v1). Call the other endpoint v2.

Now, consider the path that starts at v2, travels along e to v1, then walks along
W (passing through v0 and continuing) to end at v1 This is a longer walk than W ,
a contradiction. □

Remark 8.6. This proof also gives an algorithm for finding an Eulerian circuit.
Form a closed walk W without repeating edges, just by wandering. If it does not
use every edge, find a vertex with an unused incident edge, and make a new closed
walk based at that vertex without using edges from W . Add the new walk to W by
taking a detour at the appropriate vertex. Continue until edges are all used up.

9. Hamiltonian Graphs

Definition 9.1. A Hamiltonian cycle of a graph G is a spanning cycle in G.
That is, a walk in G that is closed (ends where it started), and touches each vertex
exactly once (except the start/end, which is touched twice). If G has a Hamiltonian
cycle, we say G is Hamiltonian.

Remark 9.2. Deciding whether a connected graph is Eulerian was algorith-
mically very easy; we just had to check whether the vertex degrees were all even.
Deciding whether a connected graph is Hamiltonian is algorithmically difficult – it
is yet another example of an NP-complete problem.

Example 9.3. Here is a random graph I generated with 10 vertices:

Let us try to find a Hamiltonian cycle. How about 05468197230? In this case we
were lucky.

Example 9.4. Here is another random graph I generated with 10 vertices:
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Let us try to find a Hamiltonian cycle. We can immediately draw in some edges:
{1, 2}, {2, 4}, {0, 4}, {0, 5}. So our cycle contains, in order, the vertices 5-0-4-2-1.

Now our cycle cannot contain {1, 4}, so it must contain {1, 3}. We have in order
5-0-4-2-1-3. We haven’t made any choices so far – we were forced to this conclusion.

Now we are stuck! The next vertex in the cycle must be one of 6, 7, 8, or 9, but
there is no edge from 3 to any of them. This graph is not Hamiltonian.

Note that Hamiltonian cycles are more likely to exist in graphs with lots of
edges. For example, complete graphs have (lots of) Hamiltonian cycles. Here is the
classic theorem that gives a precise version of this connection.

Theorem 9.5 (Dirac 1952). Suppose G is a simple connected graph with n ≥ 3
vertices, such that every vertex has degree at least n/2. Then G has a Hamiltonian
cycle.

I think that the proof is one of the most elegant and clever ones we will see in
the module.

Proof. Let G be a simple graph with n ≥ 3 vertices, such that every vertex
has degree at least n/2.

Let P be a path in G of maximum length, with vertices v1, v2, . . . , vk in order.
(Remember, path means no repeated vertices!) Draw the following:

•
v1

•
v2

•
v3

•
v4

•
v5

· · · •
vk−1

•
vk

Note k ≤ n. By assumption, all neighbours of v1 and vk are in P , since otherwise
we could extend P . (In theory there might be edges from the other vis, but ignore
them for now – we’ll just draw some in blue to remind us they exist..) Add to the
drawing:
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•
v1

•
v2

•
v3

•
v4

•
v5

· · · •
vk−1

•
vk

Now we’ll label some vertices. I’ll put a green circle around vi if vi is connected
to vk. I’ll also put a red circle around vi if vi+1 is connected to v1. Add to the
drawing:

•
v1

•
v2

•
v3

•
v4

•
v5

· · · •
vk−1

•
vk

Now I claim that some vertex has both a red circle and a green circle. We establish
this by counting. Since vk has degree at least n/2, and every edge from vk contributes
a new green circle, there are at least n/2 ≥ k/2 green circles. Since v1 has degree at
least n/2, and every edge from v1 contributes a new red circle, there are at least
n/2 ≥ k/2 red circles. On the other hand, by construction we have not put any
circles around vk. That is, of the k − 1 vertices, more than half have a green circle,
and more than half have a red circle. Thus there is a vertex, say vi, with both a
green and a red circle (like v2 in the picture).

Let C denote the cycle in G obtained by traveling:

• from v1 to vi along P , then
• from vi directly to vk (along the edge guaranteed by the green circle around

vi), then
• backwards along P from vk to vi+1, then
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• from vi+1 directly to v1 (along the edge guaranteed by the green circle
around vi).

(This is a cycle, since we started and ended at v1 and didn’t repeat any other
vertices.) Add to the drawing:

•
v1

•
v2

•
v3

•
v4

•
v5

· · · •
vk−1

•
vk

We claim C is a Hamiltonian cycle. Suppose not. Then there is a vertex not in C.
As in the proof of Euler’s theorem, we can find an edge e such that one endpoint vj
is in P , and the other, call it v, is not. Add to the drawing:

•
v1

•
v2

•
v3

•
v4

•
v5

· · · •
vk−1

•
vk

v

e

We now get a contradiction by finding a path in G that is longer than P , namely:

• Start at v and travel along e to vj , then
• Starting at vj , travel all the way around C, stopping just before hitting vj

again.

The total number of vertices in this path is k + 1, so it is longer than P by 1. This
is a contradiction, so we conclude that C must have been a Hamiltonian cycle! □

Remark 9.6. The example below shows we cannot replace n/2 with any smaller
number. (Think through why this graph has no Hamiltonian cycle.)
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Remark 9.7. We didn’t actually need the connectedness assumption in the
theorem – you can think through why it follows from the degree assumption.

Remark 9.8. While the problem of deciding whether an arbitrary graph is
Hamiltonian is NP-complete, a lot of research has gone into whether specific classes
of graphs are Hamiltonian.

For example, it was proven this year that all Kneser graphs Kn(n, k) with n > 2k
are Hamiltonian, unless (n, k) = (5, 2), i.e. with the exception of the Petersen graph.
(Two of the authors are at Warwick!)

Another example is the Lovász Conjecture which predicts that any “vertex-
transitive” graph is Hamiltonian, except for 5 specific exceptions (one of which is
the Petersen graph). A graph is vertex-transitive if any two vertices are “equivalent
up to symmetry”; more precisely, if for any two vertices, there is an automorphism
of the graph that sends one to the other. Many special cases are known.

10. Matchings of bipartite graphs

The case of finding matchings in bipartite graphs is particularly important and
well-behaved. Recall that we can draw bipartite graphs as follows:

•

•

•

•

•

•

•

•

•

A B

Here, perhaps you have two types of object that need to be matched up, e.g. job
openings and applicants. (Edges correspond to an applicant being qualified for the
job, and a matching is an assignment of a qualified person to each job.)

For this section, suppose we have a graph G, whose vertices are predivided
into partite sets A and B, so that no edges connect two vertices in A or two vertices
in B. We will now discuss the search for matchings.

Remark 10.1. If |A| < |B| , then the largest matching we can possibly hope
for is of size |A|, since every edge contains a vertex in A. Our main problem will
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be determining whether G has a perfect matching (only possible if |A| = |B|), but
we might as well generalize slightly to ask if G contains a “matching of A.” (If
|A| > |B|, we just reverse the role of A and B.)

Example 10.2. Let’s see if these graphs have matchings of A:

•

•

•

•

•

•

•

•

•

A B

•

•

•

•

•

•

•

•

•

•

•

A B

Some examples of things that could prevent a matching of A:

• There are two degree-1 vertices in A with a (single) common neighbour.
• There are three vertices in A with only two collective neighbours.
• There are four vertices in A with only three collective neighbours. (This

happened in the previous example.)

Extrapolating gives Hall’s condition: In order to have a matching of A, we must
have that for every subset S ⊆ A, we have |NG(S)| ≥ |S| (where NG(S) is the set
of all neighbours of all elements of S).

“Hall’s Theorem” says this is a necessary and sufficient condition:

Theorem 10.3 (Hall 1935). If G satisfies Hall’s condition, then there is a
matching of A.

Proof. We use induction on |A| . If |A| = 1 the theorem is true.
Let |A| > 1, and suppose the theorem holds for smaller values of |A| . There are

two cases:

(1) A stronger version of Hall’s condition holds: For every proper nonempty
set S ⊆ A, we have |NG(S)| ≥ |S|+ 1, or

(2) There exists a proper nonempty subset S ⊆ A such that |NG(S)| = |S| .
In case (1), pick an edge e (say from a to b), and delete e, along with a and b (and
all edges incident to them). In the resulting graph G′, |A| has dropped by one, and
Hall’s condition is still satisfied — the size of any neighbourhood has dropped by at
most 1, i.e. for any S ⊆ A \ {a} we have

|NG′(S)| ≥ |NG(S)| − 1 ≥ (|S|+ 1)− 1.

Thus the inductive hypothesis guarantees a matching of A \ {a} in G′, and adding
a, b, and e back in gives a matching of A in G.

In case (2), let A′ ⊆ A be such that |NG(A
′)| = |A′| . We will try to separately

find a matching of A′ and a matching of A \A′ that do not share any vertices in B.
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Since |A′| < |A| , the inductive hypothesis implies that there is a matching of A′.
The endpoints in B of this matching are a subset of NG(A

′) with |A′| elements, i.e.
they are precisely NG(A

′).
Now delete A′ and NG(A

′) from G, say resulting in a bipartite graph G′′ with
partite sets A \A′ and B \NG(A

′). We claim that G′′ satisfies Hall’s condition. Let
S ⊆ A \A′. Then

|NG′′(S)| = |NG(S ∪A′)| − |NG(A
′)|

≥ |S ∪A′| − |NG(A
′)|

= |S|+ |A′| − |NG(A
′)|

= |S| .

Thus G′′ satisfies Hall’s condition, so by the inductive hypothesis, there is a matching
of A \A′ in G′′. Combining the matching of A′ with the matching of A \A′ yields a
matching of A in G. □

Remark 10.4. In fact, it is possible to do better, and actually find a maximal
matching (even if there is no matching of A) by essentially the same proof. We
won’t go into it because it is slightly messy to write down.

Hall’s Theorem is one of the most-used theorems in graph theory. There are
also lots of interesting generalizations of the bipartite matching problem as we have
stated it, e.g. instead of having pairs be compatible/incompatible, each member of
A may have an ordered list of preferences in B. (And many other variations that
show up in various applications.)

Hall’s Theorem is often applied in pretty unintuitive ways, where the structure
of a bipartite graph is not obvious! To illustrate this, let’s prove a very old theorem
(whose original proof was longer).

Theorem 10.5 (Petersen 1891). Let G = (V,E) be a regular graph of positive
even degree 2k. Then G has a spanning subgraph that is a union of disjoint cycles.

Remark 10.6. This is a weaker condition than being Hamiltonian.

Example 10.7. Here is such a graph.

We can take as our cycles 356 and 014278. (Or 1635 and 24807... Can you find
other ways to do it?)
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Note that there are no bipartite graphs in sight. The place where Hall’s Theorem
gets used is in the following corollary, which you’ll prove on the next Assignment:

Corollary 10.8 (Assignment 4). A regular bipartite graph has |A| = |B| and
admits a perfect matching.

Proof of Theorem 10.5. If G is not connected, we’ll do it for each connected
component separately — so assume G is connected. Let V = {v1, . . . , vn}. By
Euler’s Theorem (Theorem 8.4), G has an Eulerian circuit W . We define a bipartite
graph G′ by letting A = {a1, . . . , an} and B = {b1, . . . , bn}, with an edge from ai to
bj if there is a step in W from vi to vj . (Note there is never an edge from ai to bi.)

Then G′ is k-regular, since W leaves (and arrives at) each vertex of G exactly
k times. Thus by the previous corollary, G′ admits a perfect matching M . The
corresponding subgraph of G (obtained by translating the edges of M back into
edges of G) has degree exactly two at every vertex of G. Thus it is a collection of
disjoint cycles that hits all vertices. □

11. Planar Graphs

We now turn our attention to another important class of graphs:

Definition 11.1. The crossing number cross(G) of a graph G is the fewest
number of edge crossings required to draw G in the plane. (Edges are not allowed
to pass through vertices other than their endpoints.) A graph with crossing number
zero is called a planar graph. So, a planar graph has a drawing in the plane with no
edge crossings.

Example 11.2. It is a very classical riddle (“three houses, three utilities”) that
K3,3 is not planar.

• • •

• • •

Remark 11.3. The crossing number is famously difficult to calculate, even for
very straightforward graphs. For example, it is known that

cross(Kn) ≤
1

4

⌊n
2

⌋ ⌊n− 1

2

⌋⌊
n− 2

2

⌋⌊
n− 3

2

⌋
,
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and it is conjectured that the inequality is an equality, but this has been an open
problem for about 60 years and the answer is still not known. Similarly it is known
that

crossKa,b ≤
⌊n
2

⌋⌊n− 1

2

⌋ ⌊m
2

⌋⌊m− 1

2

⌋
,

and again this is thought to be an equality, but it is not known. (This is “Turán’s
brick factory problem.”)

Example 11.4. Here is a drawing of a planar graph.

•1

•2 •3

•4

•
5

•
6

It has 4 faces: two triangular faces, a rectangular face, and a hexagonal face (the
outside).

Example 11.5. Here is another drawing of the same graph:

•1

•2 •3

•4

•
5

•
6

It has two triangular faces and two pentagonal faces.

Remark 11.6. As the two examples above show, we need to be careful with
our language here. For example, we cannot talk about faces of a planar graph —
we can only talk about faces of a specific drawing of a planar graph.

Remark 11.7. In the two examples, the number of faces is the same, four. The
total number of sides (16) of all faces is also the same — but this amount is just
double the number of edges!

Let V , E, F be the sets of vertices, edges, and faces in a drawing of a connected
planar graph G. There is a famous relationship between the numbers |V | , |E| , |F |.
Some observations:

• If we add an edge between two vertices, we will always gain one face. (|V |
stays constant, |F | − |E| stays constant.)

• If we add a vertex to the middle of an edge, we don’t change the number
of faces. (|F | constant, |V | − |E| constant.)

Theorem 11.8 (Euler’s Formula (Euler/Cauchy/etc, 1750-1811)). For a drawing
of a connected planar graph, |V | − |E|+ |F | = 2.

Here is a perhaps-intuitive fact:

Lemma 11.9. Trees are planar.
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Remark 11.10. There are quite a few subtleties involved in being really truly
rigorous about planar graphs. (Even the definition is imprecise as stated.) In order
to get into the spirit of the combinatorics, we will ignore the subtleties.

Proof sketch of lemma. We use induction on the number of vertices. Clearly
the 1-vertex tree is planar. We know that a tree G contains a leaf — remove it, and
by assumption we get a planar graph; draw that graph, then draw the leaf back in
without hitting the rest of the graph1 to get a drawing of G. □

Proof of Euler’s Formula. Let G be a connected planar graph. Pick a
planar drawing of G, with vertex/edge/face sets V,E, F . Let T be a spanning tree
of G — we automatically have a planar drawing of T , just by deleting all edges of
G not in T from our drawing. The drawing of T has 1 face, since the boundary of
any (non-outer) face contains a cycle, and T has no cycles.

Now we add back in the edges of G not in T , one by one. Since T has |V | − 1
edges, there are |E| − (|V | − 1) edges to add back in. Let G0 = T, and we get a
sequence of graphs

G1, . . . , G|E|−(|V |−2), G|E|−(|V |−1) = G.

Call the ith edge we add this way ei. When we add ei to Gi−1, it divides a face of
Gi−1 into two faces in Gi. (As you walk down ei in Gi, there is a face on your left
and a face on your right. These can’t be part of the same face, since if they were,
then that face would separate the two endpoints of ei into two different components
of the graph, whereas we know Gi−1 is connected.) Thus Gi has one more face than
Gi−1. Since T has 1 face, we conclude that G has 1 + |E| − (|V | − 1) faces. That is,
F = 2 + |E| − |V | , or |V | − |E|+ |F | = 2. □

Here is a nice corollary:

Corollary 11.11. A simple connected planar graph with n ≥ 3 vertices has at
most 3n− 6 edges.

Proof. In drawing of a simple connected graph with n ≥ 3 vertices, every face
contains has at least three sides. The total number of sides, added up over all faces,
is thus at least 3f. On the other hand, it is exactly 2e. (Remark: If both sides of
an edge are in the same face, we should count that edge twice in order for the last
sentence to be true.) Thus 2e ≥ 3f. Now

2 = n− e+ f ≤ n− e+
2e

3
=

3n− e

3
6 ≤ 3n− e

e ≤ 3n− 6.

□

Remark 11.12. The proof also showed that a simple connected planar graph
has exactly 3n− 6 edges if and only if in one (and hence every) drawing, all faces
are triangles. Given a drawing without this property, one can always add edges (e.g.
dividing a rectangle) until all faces are triangles.

1There is a subtlety here, involving the fact that the drawing might involving some terrible fractal
edges or something – you should believe me when I say that we don’t need to worry about such
things.
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Corollary 11.13. A simple planar graph has a vertex with degree at most 5.

Proof. The average degree of a vertex is

1

n

∑
v∈V

deg(v) =
1

n
(2 |E|) ≤ 6n− 12

n
< 6.

Thus there is a vertex v with deg(v) < 6. □

Corollary 11.14. K5 is not planar.

Proof. K5 has 10 > 3 · 5− 6 edges. □

In fact, we can solve the 3-houses-3-utilities problem in a similar way.

Corollary 11.15. K3,3 is not planar.

Proof. As a bipartite graph, K3,3 has no odd cycles, in particular no triangles.
Thus if a drawing existed, each face would need to have at least four sides, so
2e ≥ 4f. The equations above become

2 = n− e+ f ≤ n− e+
2e

4
=

2n− e

2
4 ≤ 2n− e.

But we have n = 6 and e = 9, so this reads 4 ≤ 12− 9, a contradiction. □

12. The Kuratowski-Wagner Theorem

The main theorem of this section is a kind of converse to the last two examples
in the previous section — it says that if a graph is not planar, then it must have K5

or K3,3 inside it in some way. We need to introduce some language to state this.

Definition 12.1. Given a graph G and an edge e of G, we can contract e; this
means that we remove e and merge its two endpoints. We can also delete e (leaving
its endpoints alone).
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Example 12.2. Here is a graph, and the result of the contraction of the red
edge:

•1

•2 •3

•4

•
5

•
6

•1

•2=3

•4

•
5

•
6

Here is another contraction of the same graph:

•1

•2 •3

•4

•
5

•
6

•1

•3

•4

•
5

•2=6

Note that the result is not a simple graph. We could also contract one of the left
edges in the last graph to get a loop...

Definition 12.3. Given a graph G and a vertex v, we can delete v which also
includes deleting all edges incident to v.

Definition 12.4. A graph H is a minor of a graph G if H can be obtained
from G by a sequence of edge contractions, edge deletions, and vertex deletions.

Example 12.5. Does K5 have the graph • • as a minor?

(Delete 2, leaving K4, then delete {0, 3}, then contract {0, 4} and {3, 4}.)

Suppose H is a minor of G, and G is planar. I claim so is H — just “do the
edge contraction in a drawing”. Put differently, if H is a minor of G, and H is not
planar, then neither is G. In particular, by Corollaries 11.14 and 11.15: if G is a
graph that has K3,3 or K5 as a minor, then G is not planar. Our next big
theorem is the converse:

Theorem 12.6 (Kuratowski 1930, Wagner 1937). A graph G is planar if and
only if it if does not have K3,3 or K5 as a minor.
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Remark 12.7. It is worth appreciating what Theorem 12.6 does for us — it
says that planarity, an apparently noncombinatorial condition (about the geometry
of drawings of G), can actually be decided combinatorially.

Idea of proof — not examinable. The full proof has several technical lem-
mas, but I will try to communicate the spirit of why, if a graph is not planar, then
K5 and K3,3 must show up. We may work consider only simple graphs, since as we
noted, multiple edges and loops do not affect planarity.

We induct on the number of vertices, with base case n = 4. A simple graph on
4 vertices is a subgraph of K4, hence is planar. Now suppose the theorem holds
for |V | ≤ n− 1, and suppose G has n vertices, and does not have K3,3 or K5 as a
minor.

Pick an edge {v, v′} and contract it, calling the resulting vertex v′′. The resulting
graph (which is not necessarily simple) has n− 1 vertices and does not have K5 or
K3,3 as a minor (since a minor of a minor is a minor), so is planar. Draw it. The
vertex v′′ has some collection of incident edges, dividing some collection of faces:
that is, if we “zoom in near v′′”, the picture must look “something like” this2:

•

•

••
•

•

•

•
• •

•

•v
′′

(I’ve drawn only the faces that touch v′′.) Now in order to turn this into a drawing
of G, we need to split v′′ back up into v and v′, appropriately assigning the edges
incident to v′′ to v and v′. Something like this:

•

•

••
•

•

•

•
• •

•

•
v

•v′

This is possible provided the vertices that need to connect to v lie consecutively
along the outer cycle. Otherwise we might have something like this:

2This statement might seem dubious – in fact some small arguments are needed here, which I omit.
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•

•

••
•

•

•

•
• •

•

•
v

•v′

There are exactly two “basic” ways in which this could go wrong:

•

•

••
•

•

•

•
• •

•

•
v

•v′ •

•

••
•

•

•

•
• •

•

•
v

•v′

On the left is the case where v′ needs to reach two different segments of the outer
cycle that are separated by edges from v. You might think that this is the only thing
that could go wrong — but in fact there’s one more, on the right.

But both of these possibilities are ruled out! The left one contains a K3,3 as a
minor, the right one contains a K5 :

•

•

•

•

•
v

•v′

•

•

•

•
v

•v′

□

Remark 12.8. Omitted from lecture, not examinable. The graph minor theorem,
proved by Robertson and Seymour in 2004, says that for any graph property P (in
this case, planarity) that is preserved under taking minors, there exists an analogue
of the Kuratowski-Wagner Theorem — that is, there is a finite collection of graphs
H1, . . . ,Hr such that G has property P if and only if it does not have H1, . . . ,Hr as
a minor. This is a deep theorem, proved over 20 years, involving 20 papers totaling
over 500 pages, and it has a huge impact on modern graph theory research.
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13. The 4/5/6 colour theorems

Recall that when I first introduced graphs, I talked about the 4-colour theorem:

Theorem 13.1 (Appel-Haken etc.). If G is planar, then χ(G) ≤ 4.

As mentioned, all known proofs are computer-assisted. We will instead prove
the 5 colour theorem, but let’s warm up with something easier — the 6 colour
theorem:

Theorem 13.2. If G is planar, then χ(G) ≤ 6.

Proof. Induct on the number of vertices, with base case n = 1. Suppose the
theorem holds for planar graphs with n− 1 vertices. Let G be a planar graph with
n vertices. By Corollary 11.13, G has a vertex v of degree at most 5. Delete v and
6-colour the remaining vertices by induction. Since v has degree at most 5, we can
colour it. □

Theorem 13.3 (Heawood 1890). If G is planar, then χ(G) ≤ 5.

Proof. Induct on the number of vertices, with base case n = 1. Suppose the
theorem holds for planar graphs with n− 1 vertices. Let G be a planar graph with
n vertices. Again, by Corollary 11.13, G has a vertex v of degree at most 5. Delete
v and 5-colour the remaining vertices by induction.

If deg(v) < 5, we can colour v, so assume deg(v) = 5. If the five neighbours of v
do not all have different colours, we can colour v, so assume they do. We have:

• •

•
•

•
•

Consider all red and orange vertices and edges between them. These form a subgraph.
If the red and orange vertices shown in the picture above are in different connected
components of this subgraph, then we can flip red and orange in one of those two
connected components, getting a valid colouring where only 4 colours are used to
colour the neighbours of v — then we can colour v and are done. If not, there is a
path (alternating orange-red) connecting these two vertices:

• •

•
•

•
•

•

• •

•

•

•

Similarly, consider all blue and yellow vertices and edges between them. These
form a subgraph. If the blue and yellow vertices shown in the picture above are in
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different connected components of this subgraph, then we can flip blue with yellow
in one of those two connected components, getting a valid colouring where only 4
colours are used to colour the neighbours of v — then we can colour v and are done.
If not, there is a path (alternating blue-yellow) connecting these two vertices. But
such a path would have to cross the red-orange path, a contradiction! We conclude
that χ(G) ≤ 5.

• •

•
•

•
•

•

•

•

• •

•

•

•

□

Remark 13.4. Let’s see why Kempe thought the above argument proved the
4-colour theorem. Suppose we tried to use the same strategy to prove the 4-colour
theorem by induction. As before, G has a vertex v with degree at most 5. Delete v
and 4-colour the remaining vertices by induction. If deg(v) < 5, it is not hard to
check that the proof we just gave of the 5-colour theorem gives a 4-colouring of G —
this is basically because there was a vertex in the above argument that was never
used. If deg(v) = 5 and its neighbours do not exhaust all four colours, we also have
a valid 4-colouring. There are, up to symmetry, two remaining possibilities for what
the neighbourhood of v looks like:

• •

•
•

•
•

• •

•
•

•
•

For the left case, you can check that the 5-colouring argument again works without
modification to give a valid 4-colouring. For the right case, we can flip the blue
vertex to yellow unless there is an alternating path like this:

• •

•
•

•
•

•

•

• •

•

Similarly we can flip blue to yellow unless there is also an alternating path like this:
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• •

•
•

•
•

•

•

• •

•

•

•

••
•

Now, the left red vertex is separated from the orange vertex, so we can flip red/orange
on the connected component of the red/orange subgraph containing the left red
vertex. Similarly, we can flip red/yellow on the connected component of the
red/yellow subgraph containing the right red vertex. As a result, we can colour v
red.

Where does this go wrong? The picture is misleading — the two alternating
paths we constructed might intersect in a blue vertex, e.g.:

• •

•
•

•
•

•

••

•

• •

•

•

• •

•

••
•

Now if we go through the supposed proof, we may have to flip both endpoints of
the thick edge to red, creating a problem.

14. Some Ramsey theory

Ramsey theory is a branch of combinatorics that deals with what kinds of
structures are guaranteed to exist in sufficiently large sets. Here is an example of
such a structure, from Assignment 4:

Example 14.1. Show that in any group of at least six people, one can find
either three people who all know each other, or three people who all do not know
each other.

Hopefully thinking about this problem on the assignment has convinced you
that it is not a totally obvious fact! Here are a couple of translations to graph
theory:

Example 14.2. Every graph with at least 6 vertices has a triangle or a 3-vertex
independent set. (Here the edges correspond to pairs of people who know each
other.)

Example 14.3. colour the edges of K6 with two colours, say red and blue.
Then there is a red triangle or a blue triangle. (Here the red edges are pairs of
people who know each other.)

I’ll reproduce a solution to this problem here. Let us search for red triangles.
Pick a vertex v with at least three red edges from it — we can assume, after possibly
flipping colours, such a vertex exists. Let a, b, c be the endpoints of these three red
edges. What are the colours of the edges connecting a, b, c? If they are all blue, we
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have, of course, a blue triangle. If not, one of them is red — then its endpoints,
together with v, form a red triangle.

Remark 14.4. Is it true if we have only five people? No:

•

•
•

•
•

Is it true for larger groups of people than 6? Of course.

The foundational theorem of Ramsey theory is a generalization of our example:

Theorem 14.5 (Ramsey 1930). Let r, s ≥ 2. Then for sufficiently large n, every
2-colouring of the edges of Kn contains a red Kr or a blue Ks.

Definition 14.6. The minimal such n is called the Ramsey number R(r, s).

Remark 14.7. We proved R(3, 3) = 6. (We first proved R(3, 3) ≤ 6, then
constructed an example that shows R(3, 3) > 5.)

Remark 14.8. In fact there are more general Ramsey numbers e.g. R(3, 3, 4),
the minimum n such that every 3-colouring of Kn has a red K3, a blue K3, or a
green K4.

The proof of Ramsey’s Theorem is essentially a generalization of the proof we
did that R(3, 3) ≤ 6.

Proof of Theorem 14.5. Just as before, we will find a vertex with either
a large number of red edges — enough that, by induction, the other endpoints
guarantee a red Kk−1 or a blue Kℓ — or a large number of blue edges — enough
that, by induction, the other endpoints guarantee a red Kk or a blue Kℓ−1.

We induct on k + ℓ, where the base cases are k = 2 (and ℓ arbitrary) and ℓ = 2
(and k arbitrary). (To make sure you understand the definitions correctly, think
through what R(k, 2) and R(2, ℓ) are.) Suppose k, ℓ > 2 and that the theorem
holds for (k − 1, ℓ) and (k, ℓ− 1). (That is, the exist Ramsey numbers R(k − 1, ℓ)
and R(k, ℓ − 1) satisfying the property in the theorem.) Consider the complete
graph KR(k−1,ℓ)+R(k,ℓ−1). Let v0 be a vertex. We must have R(k − 1, ℓ) red edges
or R(k, ℓ− 1) blue edges, since otherwise we would have at most

(R(k − 1, ℓ)− 1) + (R(k, ℓ− 1)− 1) = R(k − 1, ℓ) +R(k, ℓ− 1)− 2

edges incident to v0, whereas we know that we actually have deg(v0) = R(k− 1, ℓ) +
R(k, ℓ− 1)− 1 such edges.

If we have R(k − 1, ℓ) red edges: Among the endpoints of these edges, we
have a red Kk−1 — giving, with v0, a red Kk — or a blue Kℓ.

If we have R(k, ℓ− 1) blue edges: Among the endpoints of these edges, we
have a red Kk, or a blue Kℓ−1 — giving, with v0, a blue Kℓ.

In either case, we have a red Kk or a blue Kℓ, and are done. □

Remark 14.9. We actually showed R(k, ℓ) ≤ R(k − 1, ℓ) +R(k, ℓ− 1). In fact,
this recursive structure looks very similar to the recursion for binomial coefficients,
and you can easily use it to prove by induction:
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Corollary 14.10. R(k, ℓ) ≤
(
k+ℓ−2
k−1

)
.

The upper bound of Corollary 14.10 gives R(3, 3) ≤
(
4
2

)
= 6, and we know that

actually R(3, 3) = 6. Let’s quickly see that we are not always so lucky. The upper
bound gives R(3, 4) ≤

(
5
2

)
= 10, but we now show that actually R(3, 4) = 9.

Example 14.11. To show R(3, 4) = 9, we need to show two things. First, that
it is possible to 2-colour the edges of K8 so that there is no red K3 or blue K4. We
attempt to do so, and come up with:

•

•
•

•

•

•
•

•

The red and blue edges alone look like this:

•

•
•

•

•

•
•

•

•

•
•

•

•

•
•

•

Convince yourself there are no red triangles on the left, or blue K4s. (The four blue
edges from a vertex come in two pairs, neither of which form a triangle; picking
three edges must include one of the pairs...)

Next, we need to show that if the edges of K9 are 2-coloured, there is a red
K3 or blue K4. We can think along the same lines as in the proof of Ramsey’s
Theorem. If we can find a vertex v0 with 4 red edges coming out of it, say to vertices
v1, v2, v3, v4, then either all 6 edges between v1, . . . , v4 are blue — giving a blue K4

— or one is red, giving a red triangle with v0.
Is it necessarily true that some vertex has 4 red edges? (Of course not, e.g. all

edges could be blue...) Suppose that every vertex has at most 3 red edges. Then
the total number of red edges is at most 1

2 (3 · 9) = 27/2. Since the number of red
edges is an integer, it is at most 13, leaving at least 36− 13 = 23 blue edges. What
does this get us? Well, note that the average number of blue edges from a vertex is
1
9 (23 · 2) = 46/9 > 5. So we at least know that there is a vertex w0 with six blue
edges coming out of it. Let’s see if we can use this!

Call the other endpoints of these six edges w1, . . . , w6. The edges between
w1, . . . , w6 are coloured red or blue. Since R(3, 3) = 6, there is either a red triangle
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or a blue triangle among w1, . . . , w6. If there is a red triangle, we are done. If there
is a blue triangle, then together with w0 we have found a blue K4.

Remark 14.12. Computing Ramsey numbers, while not our main interest, is
notoriously difficult. For example, R(5, 5) is somewhere between 43 and 48, but we
do not know the exact value.

The next thing I’d like to do is prove a lower bound for R(k, k), in order
to showcase an extremely influential proof technique in combinatorics called the
probabilistic method.

Theorem 14.13 (Erdös (1947)). For k ≥ 4, we have R(k, k) > 2k/2.

Proof. To prove this, we will show that if n ≤ 2k/2, and we select a random
2-edge-colouring of Kn (for each pair of edges, we flip a coin to choose its colour),
then the probability of a red Kk is less than 1/2 (and similarly, by symmetry, for the
probability of a blue Kk). Thus there must exist colourings where neither occurs.

Let us count the total number of red Kks among all 2-edge-colourings of Kn.
For each choice of k vertices, the number of colourings in which the corresponding

Kk is red is 2(
n
2)−(

k
2). Thus the total number of red Kks among all 2-edge-colourings

is
(
n
k

)
· 2(

n
2)−(

k
2).

We want to show that the number, Mred, of 2-edge-colourings that contain a red

Kk is relatively small. The worst-case scenario would be if each of the
(
n
k

)
· 2(

n
2)−(

k
2)

red Kks above appear in different colourings. Of course, they don’t — we certainly
do have 2-edge-colourings with multiple red Kks — but we do get the inequality

M ≤
(
n

k

)
· 2(

n
2)−(

k
2).

Now if n ≤ 2k/2, we get

Mred ≤
(
n

k

)
· 2(

n
2)−(

k
2)

=
n · (n− 1) · · · · · (n− (k − 1))

k!
· 2(

n
2)−(

k
2)

<
nk

k!
· 2(

n
2)−(

k
2)

<
nk

2k
· 2(

n
2)−(

k
2)

≤ 2k
2/2

2k
· 2(

n
2)−k(k−1)/2

=
1

2k/2
· 2(

n
2)

<
1

2
· 2(

n
2).

By symmetry Mblue has the same property, so Mred+Mblue < 2(
n
2). Thus there

must exist 2-edge-colourings with no red or blue Kk.
□

Remark 14.14. This proof is nonconstructive — and no constructive proof is
known!
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This says something interesting — if you want a 2-edge-colouring of Kn with
no monochromatic Kk, a good way of doing it is to pick colours at random. In fact,
our probability estimate above shows that if k is large, with n ≤ 2k/2, it is very
unlikely that there is a monochromatic Kk in a random 2-edge-colouring. On the
other hand, if you try to write down a 2-edge-colouring systematically, you are likely
to make it “not random enough,” and end up with monochromatic Kks.

Mathematicians sometimes describe this phenomenon as the difficulty of “finding
hay in a haystack”; even if most graphs satisfy some property, it may be difficult to
actually write one down that you can prove satisfies the property, for any given k.

Remark 14.15. I called this a “probabilistic” argument, but it was really just a
counting argument. You could instead phrase it as: “We calculated the probability
that a random 2-edge-colouring has a red Kk.” In more complicated arguments,
such as the next one, we’ll see that the language of probability really does streamline
the argument.

Here are two more results in Ramsey theory that are not (explicitly) about
graphs.

Theorem 14.16 (Schur’s Theorem). Suppose you have 5 (or k) colours. For
sufficiently large n, if you colour the set [n] with your 5 colours, then there will exist
x, y ∈ [n] such that x, y, and x+ y all have the same colour.

Theorem 14.17 (Erdös-Szekeres-Klein). Given sufficiently many noncollinear
points in R2, there exist 7 of them that are the vertices of a convex 7-gon. (Or
replace 7 with whatever k you like.)

15. Another probabilistic proof

If you try to create a graph with large chromatic number, you will probably
end up drawing something with a large complete subgraph. In fact, for every r,
Mycielski (1955) constructed a graph with chromatic number r and no triangles.
(See the optional material in section 16.) Erdös proved the following generalization:

Theorem 15.1 (Erdös (1959)). For any positive integers k and r, there exists
a graph with chromatic number > r, with girth > k. (That is, no cycles of length
≤ k.)

This is a nonconstructive proof that uses the probabilistic method in a very
beautiful way. (Note: < vs ≤ unimportant.)

Proof. Fix k and r. We are going to take n to be very large, and we are going
to pick a random simple graph G with n vertices as follows: For each pair of vertices,
draw an edge between them with probability p = 1

n1−ϵ , for some very small ϵ > 0.
This probability is just a little bit larger than 1/n.

Here is the plan: It would be nice to show that if n is very large, then with
nonzero probability, G will have no cycles of length ≤ k, and will have chromatic
number > r. However, this turns out not to be the case — in fact, it will turn out
that for n very large, G will likely have large chromatic number, but probably will
have cycles of length ≤ k — just not very many of them.3 Few enough, in fact, that

3Why didn’t we then just make p a little bit smaller? It turns out that if we decrease p, we cross

into the “no short cycles” zone at the same time as we leave the “large chromatic number” zone.
(In fact, below this threshold, as n → ∞, it becomes highly likely that G is acyclic, which implies
χ(G) ≤ 2.)
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we will be able to delete a vertex from each cycle and still have enough vertices and
edges to know that the chromatic number is large.

For convenience, we will call cycles of length ≤ k simply “short cycles.” Here is
the quantitative version of the statement “G probably will have only a few short
cycles.” More precisely:
Claim 1: On average, G will have ≤ 1

2 (k − 2)nkϵ short cycles.

Proof of Claim 1. The number of possible k-cycles is

n · (n− 1) · · · · · (n− (k − 1))

2k
.

(This is the number of orderings of k vertices, but we divide by 2k because we don’t
care about the starting point, or the order, of the cycle.) For each of these possible
cycles, it exists in G with probability pk.

Thus the average over G, weighted by probability, of the number of k-cycles in
G is

Ek :=
n · (n− 1) · · · · · (n− (k − 1))

2k
pk ≤ nk

2
pk =

1

2
nkϵ.

(In probability, such an average is called the expected value.)
To finish the proof of the claim, we add up over lengths 1, . . . , k (ignoring 1 and

2 because our random graphs are all simple). The weighted average/expected value
of the number of short cycles is

E := E3 + · · ·+ Ek ≤
k∑

i=3

1

2
(nϵ)i ≤ 1

2

k∑
i=3

(nϵ)k =
1

2
(k − 2)nkϵ.

(Note nϵ ≥ 1, so (nϵ)k ≥ (nϵ)i.) □

We now know that G has few short cycles on average. We need something a bit
stronger. This “average”/expected value was easy to calculate, but we are looking
for not a statement about averages, but a statement about probabilities.
Claim 2: For large n, G is very unlikely to have more than n/2 short
cycles. (This is the sort of probabilistic statement we need. As mentioned above,
after we know this, we will be able to take G and delete a vertex from each cycle,
and still have a large graph left over.)

Proof of Claim 2. We know that, on average, G has ≤ 1
2 (k − 2)nkϵ short

cycles. We want an upper bound on the probability P that G has more than n/2
short cycles. To get an upper bound, consider the “worst-case scenario”, where that
average is due to only two types of graph: graphs with exactly n/2 short cycles, and
graphs with zero short cycles. (So all of the short cycles are contributing to P as
much as possible, with no redundancy. This gives as high a value of P as possible
given the average number of short cycles.) In this worst case, we would have:

E =
n

2
· P + 0 · (1− P ) ≤ 1

2
(k − 2)nkϵ

P ≤ 2

n

(
1

2
(k − 2)nkϵ

)
= (k − 2)nkϵ−1.

(This inequality holds even in our worst-case estimate, so it will certainly work in
reality. Note for those who have seen probability: we just used Markov’s inequality.)
As ϵ is very small (in particular, we should have picked ϵ < 1/k), the exponent is
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negative, so P → 0 as n → ∞. That is, for very large n, the probability of more
than n/2 short cycles is very small. □

Next we need to make sure that if we take such a graph G (for very large n)
and delete a vertex from each of the ≤ n/2 short cycles, we get a graph H with
chromatic number > r. How do you show that H has large chromatic number? One
way is to show that indV (H) is small — for each colour, the set of vertices of that

colour is an independent set. So if indV (H) < # vertices of H
r , then χ(H) > r. We

know H has at least n/2 vertices, so it is sufficient to show that indV (H) < n
2r .

Note that an independent subset of H is also an independent subset of G, so it
is enough to show that indV (G) < n

2r .
Claim 3: If n is large, then with high probability, G will satisfy indV (G) <
n
2r .

Once we prove this claim, we will be done!

Proof of Claim 3. We actually almost did this already. In the proof of the
Ramsey number lower bound, we coloured the edges of Kn with red and blue, and

said that the probability of a blue Ka is less than
(
n
a

)
/2(

a
2). (Switched notation from

k to a because we already have a k in this proof.) If we had chosen edges to be
red with probability p and blue with probability 1 − p, the probability of a blue

Ka would be, by the same argument,
(
n
a

)
· (1− p)(

a
2). A blue Ka is the same as an

independent set of size a in the subgraph G consisting of all n vertices and all red
edges.

The only difference is choosing which edges are red/blue versus which edges
do/don’t exist – but these are completely equivalent. Thus the probability that

indV (G) ≥ a is at most
(
n
a

)
· (1− p)(

a
2).

In particular, the probability that indV (G) ≥ n
2r is at most(

n

n/2r

)
· (1− p)(

n/2r
2 ) =

(
n

n/2r

)
· (1− nϵ−1)(

n/2r
2 ).

It is sufficient to show that this approaches zero as n → ∞, a somewhat tedious
analysis exercise. Here is the argument. We have:(

n

n/2r

)
· (1− nϵ−1)(

n/2r
2 ) ≤ nn/2r(1− nϵ−1)(n/2r)(n/2r−1)/2

=
(
n(1− nϵ−1)(n/2r−1)/2

)n/2r
It is sufficient to show that the quantity inside the parentheses approaches zero as
n → ∞. We have

n(1− nϵ−1)(n/2r−1)/2 ≤ n(e−nϵ−1

)(n/2r−1)/2,

due to the fact that 0 ≤ 1− x ≤ e−x. We then have:

n(e−nϵ−1

)(n/2r−1)/2 = n · exp(−nϵ−1(n/2r − 1)/2)

= n · exp
(
−nϵ

4r
+

nϵ−1

2

)
= exp

(
ln(n)− nϵ

4r
+

1

2n1−ϵ

)
.
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As n → ∞, the third summand in the exponent goes to zero, and we now use the
fact that nϵ (and nϵ/4r) grows faster than ln(n). Thus the exponent approaches
−∞, so the expression approaches zero.

Putting the inequalities all together, we have shown that with high probability,
if n is large, we have indV (G) < n

2r . □

Taking n sufficiently large, we have now shown that with high probability, if we
choose G according to our random scheme (i.e. each edge exists with probability
nϵ−1), then with high probability, G has at most n/2 short cycles, and deleting a
vertex from each yields a graph H with no independent sets large enough to allow
an r-colouring. □

16. Not examinable — Triangle-free graphs with high chromatic
number: The Mycielski construction

This section was not covered in lecture. We give a constructive argument for
the previous theorem in the case k = 3. This predates Erdős’s result by a few years.

Theorem 16.1 (Mycielski, 1955). For any positive integer r ≥ 2, there exists a
graph Mr with chromatic number r that contains no 3-cycles.

Example 16.2. Here are two pictures of M4 — you can see that it has no
triangles, and you can convince yourself after a few attempts that there is no
3-colouring.

Remark 16.3. This is the k = 3 case of Erdős’s theorem from the last section.
In 1968, Lovász found a constructive proof of the general theorem.

Proof of Mycielski’s Theorem. We define M2 = P2. We then define Mr

recursively as follows. Suppose Mr has vertices v1, . . . , vn. We define Mr+1 to be
the graph with vertices v1, . . . , vn, u1, . . . , un, w and edges:

• an edge {vi, vj} if and only if {vi, vj} is an edge of Mr,
• an edge {ui, vj} if and only if {vi, vj} is an edge of Mr (in particular, ui

is not adjacent to vi)
• an edge {ui, w} for all i = 1, . . . , n,
• no edges of the form {ui, uj},
• no edges of the form {vi, w}.

We now prove that Mr is triangle-free and has chromatic number r. But first,
examples:

Example 16.4. Verify that M3 = C5 and M4 is as pictured above.

Claim 1: Mr is triangle-free. We induct on r, with easy base case r = 2.
Suppose Mr−1 is triangle-free. What could a triangle in Mr look like? It cannot
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contain w, as w is only adjacent to uis, and there are no edges between the uis.
Similarly it cannot contain two uis. By the inductive hypothesis, it cannot contain
three vis. The only possibility is that it consists of three vertices vi, vj , uk, where
vi and vj are adjacent (in Mr, and therefore also in Mr−1). Note k cannot be equal
to i or j since uk is not adjacent to vk. But if {uk, vi} and {uk, vj} were edges of
Mr, then by definition {vk, vi} and {vk, vj} would be edges of Mr−1 – since vi and
vj are adjacent in Mr−1, this contradicts the inductive hypothesis. Thus there are
no triangles in Mr.

Claim 2: Mr has chromatic number r. We again induct on r, with easy
base case r = 2. Suppose χ(Mr−1) = r − 1. We may colour Mr with r colours by
choosing a colouring of Mr−1 with r − 1 colours, colouring ui with the same colour
as vi, and colouring w with the unused rth colour.

We now need to show that Mr cannot be coloured with r − 1 colours. Suppose
we had such a colouring, say g : V → {1, . . . , r − 1}. We will construct a colouring
g′ of Mr−1 with at most r − 2 colours, which will violate the inductive hypothesis.
The vertex w has some colour c, and we know that none of the uis have colour c.
We define

g′(vi) =

{
g(vi) g(vi) ̸= c

g(ui) g(vi) = c
.

That is, we recolour any vi with colour c so that its colour matches that of ui. We
claim this gives a valid colouring of Mr−1, with only r − 2 colours since c is not
used. Consider an edge {vi, vj}. We must show that g′(vi) ̸= g′(vj). Here are the
possibilities:

(1) Neither g(vi) nor g(vj) is equal to c. In this case, neither one got changed,
i.e. g′(vi) = g(vi) and g′(vj) = g(vj), and these two colours must be
different as g was a valid colouring.

(2) Both g(vi) and g(vj) are equal to c. This is actually not possible, since g
was assumed to be a valid colouring.

(3) Exactly one is equal to c, say g(vi) = c and g(vj) ̸= c. Then g′(vi) = g(ui)
and g′(vj) = g(vj). Since g was assumed to be a valid colouring, and ui

is adjacent to vj by construction, the two colours g′(vi) and g′(vj) are
different.

Thus g′ is a colouring of Mr−1 with r − 2 colours, contradicting the inductive
hypothesis. We conclude that Mr cannot be coloured with r − 1 colours, so
χ(Mr) = r. □

17. Not examinable: The Tree Enumeration Formula

This section was not covered in lecture. How many trees are there with n
labeled vertices? (Equivalently, how many spanning trees does the complete graph
Kn have?)

Example 17.1. On 2 vertices, just one. On 3 vertices, 3. On 4 vertices, there
are 4!/2 trees that are the path P4, and 4 trees that are stars, for 16 total.

Doing 5 is not too bad either – there are 5!/2 copies of P4, 5 stars with 4 leaves,
and 5 · 4 · 3 3-leaf stars where one leaf has sprouted another. The total is 125.

What is the sequence 1, 3, 16, 125? They are all perfect powers, and you might
guess nn−2. (You hopefully verified the n = 7 case on Assignment 3!) This is correct.
It is generally called Cayley’s formula, though Cayley’s paper points out that it
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was known earlier. There are many beautiful proofs of this formula, including a
direct (but nonintuitive) bijective proof, and a proof involving linear algebra. I
want to show you a nice proof by double-counting (i.e. calculating some appropriate
quantity in two different ways) due to Pitman.

Theorem 17.2. There are nn−2 trees on n labeled vertices.

Proof. Recall that given a rooted tree, we can uniquely assign a direction to
each edge so that all edges point away from the root.

Let X denote the set of sequences of directed edges that, when put together,
make a rooted tree. We count |X| in two ways.

First: We could find such a sequence by choosing a tree, then choosing its root
(which tells us what the direction of each edge should be), then choosing in which
order the edges appear in the sequence. The answer is |X| = Tn · n · (n− 1)!, where
Tn is the number of trees on n labeled vertices. This is because there are n ways to
choose a root, and (n− 1)! ways to order the n− 1 edges in the sequence.

Second, we could find such a sequence by starting with the empty graph and
adding edges (with directions) one at a time. In the first step, there are n(n− 1)
possibilities; n choices for the “out-vertex” with the arrow coming out of it, and
n− 1 choices for the “in-vertex” with the arrow coming into it (which can’t be the
out-vertex as this would create a loop).

For the second step, there are n choices for the out-vertex. For the in-vertex, it
would seem to depend on the out-vertex. If the out-vertex is one of the two vertices
from step 1, we had better avoid the other vertex from step 1 (which would create a
cycle), leaving n− 2 possibilities. Otherwise, we can choose any other vertex except
the in-vertex from step 1 (which would create a vertex with two in-edges, impossible
in a rooted tree). This is still n− 2 choices though! We get n(n− 2).

This pattern continues, for the following reason. Suppose we have already drawn
k edges. Then we have a forest of n− k rooted trees. Now we want to add another
direct edge by choosing an out-vertex and an in-vertex. There are n choices for
out-vertex v. For the in-vertex, we need to avoid all vertices that are previous
in-vertices (there are k of these, one from each step, and they are all distinct), as well
as the vertex farthest upstream from v. (This could be v itself, and is well-defined
as each vertex has at most 1 arrow pointing into it. We need to avoid this edge to
avoid making a cycle.) Thus the number of possibilities is n(n− (k + 1)).

Another way of saying this is that for the in-vertex, we need to choose the root
of one of our n− k rooted trees, but it cannot be the tree containing the out-vertex.

If we follow these rules, we really do get a rooted tree at the end. To see this,
note that we have made sure not to add cycles, and we have added an in-edge to all
but one of the vertices. Call that other one the root – we must have a connected
graph because “swimming upstream” must eventually take you to the root.

We have shown |X| =
∏n−1

k=1 n(n − k) = nn−1 · (n − 1)! = nn−2 · n!. Thus
Tn = nn−2. □

Remark 17.3. It is worth mentioning two things about the proof that uses
linear algebra. First, it shows that Cayley’s formula is a special case of a more
general fact, as follows.
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Let G be a simple graph with n vertices v1, . . . , vn. We form an n× n matrix
Q, called the Laplacian of G, by

Qij =


deg(vi) i = j

−1 i ̸= j, and i, j adjacent

0 i ̸= j, and i, j not adjacent

.

Note that the sum of all rows (or columns) is zero. This means that Q has rank
at most n− 1. In fact the rank of Q is n− c, where c is the number of connected
components of G — so if G is connected Q has rank n− 1, and hence its eigenvalues
are 0, λ1, . . . , λn−1 for nonzero λ1, . . . , λn−1.

Example 17.4. The complete multipartite graph K2,2,2 has the following
Laplacian matrix:


4 0 −1 −1 −1 −1
0 4 −1 −1 −1 −1
−1 −1 4 0 −1 −1
−1 −1 0 4 −1 −1
−1 −1 −1 −1 4 0
−1 −1 −1 −1 0 4


The characteristic polynomial is x(x−4)3(x−6)2, so the eigenvalues are 0, 4, 4, 4, 6, 6.

Theorem 17.5 (Kirchoff). G has exactly 1
nλ1 · λ2 · · · · · · · λn−1 spanning trees.

Example 17.6. This says that K2,2,2 has 1
64

3 · 62 = 384 spanning trees.

Example 17.7. It is easy to check that the Laplacian matrix of Kn (which has
n−1 on the diagonal, and −1 elsewhere) has characteristic polynomial x ·(x−n)n−1.
Thus Kn has 1

nn
n−1 = nn−2 spanning trees.

Remark 17.8. The second thing to note about this proof is that it is actually
related to circuit analysis. For example, Kirchoff used Theorem 17.5 to calculate
the effective resistance between two points in a circuit of resistors. A special case
says that if all resistors have the same resistance, the effective resistance between
vertices a and b is proportional to the number of spanning trees of G/ab divided by
the number of spanning trees of G, where G/ab is obtained by “gluing” a to b.





APPENDIX A

Support class problems

1. Week 2 support class problems

(1) You have 15 songs in your music library. A music service creates a 15-song
playlist for you by choosing one song at random from your collection for
each of the 15 slots. (So, for example, it is possible that it plays the same
song 15 times, although that is exceedingly unlikely.)
(a) How many possible playlists are there?
(b) Of the playlists in part (a), what percentage of them repeat at least

one song? First take a guess; then figure it out.
(c) Of the playlists in part (a), what percentage of them repeat at least

one song twice in a row? First take a guess; then figure it out.
(d) Trickier, food for thought: What percentage of playlists play some

song ≥ 3 times? What percentage of playlists play some song ≥ 3
times in a row? What if we replaced 3 by some other number, e.g. 4?

(Note from M. Chan: On the whole, people tend to significantly under-
estimate the likelihood that a song repeats, or even repeats twice in a
row. For this reason, music services like Spotify or iTunes initially fielded
many complaints from users that their playlist algorithms were defective.
In some cases, these companies decided to rewrite their algorithms to
make their playlists feel more random, even though the new methods were
actually less random!)

(2) Let n be a positive integer. Count the following objects:
(a) Ordered pairs of subsets A,B ⊆ {1, . . . , n}.
(b) Nested ordered pairs of subsets A ⊆ B ⊆ {1, . . . , n}.
(c) Ordered pairs of subsets A,B ⊆ {1, . . . , n} such that A ∩B ̸= ∅.
(d) Ordered triples of subsets A,B,C ⊆ {1, . . . , n} such that A ⊆ C,

B ⊆ C, and A ∩B ̸= ∅.
(3) Prove that for every positive integer n, we have

(
2n
n

)
< 4n. (Think combi-

natorially...)

Solutions.

(1) (a) 1515 ≈ 4× 1017.

(b) 1515−15!
1515 = 99.9997%. (The number of playlists that do not repeat a

song is 15!)

(c) 1515−15·1414
1515 = 61.94%. (The number of playlists that do not repeat a

song twice in a row is 15 · 1414, since there are 15 choices for the first
song, and 14 choices for all subsequent songs.)

(2) (a) There are 2n subsets of {1, . . . , n}, so there are 2n · 2n = 4n ordered
pairs of subsets.

77
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(b) For each element i ∈ {1, . . . , n}, there are 3 possibilities: either i ̸∈ B,
or i ∈ A, or i ∈ B \A. (And these choices are made independently.)
Thus there are 3n choices. To check this is okay: Call these three
cases P1, P2, P3. Write down the bijection from length-n sequences of
elements of {P1, P2, P3} to nested pairs of subsets, and the bijection
in the reverse direction. (Draw a Venn diagram! It will help with the
remaining parts!)

(c) It is best to find the number of ordered pairs A,B with A ∩B = ∅,
and subtract it from 4n. In this case, each element is either in A, or
in B, or in neither A nor B, giving 3n choices. Thus the answer is
4n − 3n.

(d) The total number of ordered triples (A,B,C) satisfying A,B ⊆ C is
5n, due to the five choices: “not in C”, “in C but not A or B”, “in A
but not B”, “in B but not A”, and “in both A and B”. The number
of ordered triples (A,B,C) satisfying A,B ⊆ C and A ∩B = ∅ is 4n,
due to the four choices: “not in C”, “in C but not A or B”, “in A”,
and “in B”. Thus the number of ordered triples (A,B,C) satisfying
A,B ⊆ C and A ∩B ≠ ∅ is 5n − 4n. (You could write them all down
when n = 2...)

(3) The left side is the number of n-element subsets of {1, . . . , 2n}, and the
right side is the number of all subsets.
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2. Week 3 support class problems

(1) Let F (n) be the number of set partitions of [n] with no singleton blocks.
Prove that B(n) = F (n) + F (n+ 1).

(2) Find a simple closed form for the ordinary generating function of an = n2.

Solutions.

(1) A set partition of [n] either has no singleton blocks, or has at least one.
We need to show that set partitions of [n] with at least one singleton block
are counted by F (n + 1). Given such a set partition, take all singleton
blocks, combine them, and add the element n+1. This gives a set partition
of [n + 1] with no singleton blocks. In the other direction, given a set
partition of [n+1] with no singleton blocks, take the block containing n+1,
delete n+ 1, and split it into singletons. This gives a bijection between
set partitions of [n] with at least one singleton block and set partitions of
[n+1] with no singleton blocks, from which the expression follows. (There
are other proofs.)

(2) One way: Begin with 1
1−x =

∑∞
n=0 x

n. Taking a derivative gives

1

(1− x)2
=

∞∑
n=0

nxn−1.

Multiply by x to get

x

(1− x)2
=

∞∑
n=0

nxn.

Repeat the two steps:

x(1 + x)

(1− x)3
=

∞∑
n=0

n2xn.
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3. Week 4 support class problems

(1) Find closed formulas for S(k, k − 1), S(k, 2), and S(k, k − 2).
(2) LetA(x) denote the ordinary generating function for a sequence (a0, a1, a2, . . .).

Find the generating functions for the following sequences:
(a) (a0, 0, a1, 0, a2, 0, . . .)
(b) (a0, a0, a1, a1, a2, a2, . . .)
(c) (a0, 0, a2, 0, a4, 0, a6, 0, . . .)
(d) (0, a1, 8 ∗ a2, 27 ∗ a3, 64 ∗ a4, 125 ∗ a5, . . .)
(e) (a2 + 3 ∗ a1 + a0, a3 + 3 ∗ a2 + a1, a4 + 3 ∗ a3 + a2, . . .)

Solutions.

(1) S(k, k − 1) counts set partitions of [k] into k − 1 parts. The sizes of the
parts must be 1, 1, . . . , 1, 2. Such a set partitions is determined by which
two elements of [k] are in the 2-element part of the set partitions. Thus

S(k, k − 1) =
(
k
2

)
.

S(k, 2) counts set partitions of [k] into 2 parts. Such a set partition
is determined by a proper nonempty subset of [k], of which there are
2k − 2. But, each set partition gets counted exactly twice this way. (A set
partition into two parts consists of two complementary sets S, T , and each
contributes to the 2k−2−2.) Thus 2S(k, 2) = 2k−2, i.e. S(k, 2) = 2k−1−1.

S(k, k−2) counts set partitions of [k] into k−2 parts. These either have

sizes 1, 1, . . . , 1, 2, 2 or 1, 1, . . . , 1, 3. There are 1
2

(
k
2

)(
k−2
2

)
= k!

2!2!(k−4)! =
k(k−1)(k−2)(k−3)

4 of the first type, and
(
k
3

)
of the second type, so we get

1
2

(
k
2

)(
k−2
2

)
+
(
k
3

)
.

(2) (a) A(x2)
(b) A(x2) + xA(x2)

(c) A(x)+A(−x)
2

(d) x d
dx

(
x d
dx

(
x d
dx (A(X))

))
= xA′(x) + 3x2A′′(x) + x3A′′′(x)

(e) A(x) + 3A(x)
x + A(x)

x2 − 3a0+a1

x − a0

x2 .
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4. Week 5 support class problems

(1) Let an denote the number of partitions of n into odd parts, where each
part may appear no more than twice. Write

∑∞
n=0 anx

n as an infinite
product. Use the product to calculate coefficients of powers of x up to x7.
You should get a7 = 3, corresponding to 7, 5 + 1 + 1, 3 + 3 + 1.

Solution sketch.

(1) By similar reasoning to that we say in class, the product formula is

(1 + x+ x2)(1 + x3 + (x3)2)(1 + x5 + (x5)2) · · · =
∏
i≥0

(1 + x2i+1 + x4i+2).

Expanding gives:

1+x+x2+x3+x4+2x5+2x6+3x7+3x8+3x9+4x10+5x11+6x12+7x13+ · · ·
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5. Weeks 6/7 support class problems

(1) Let pk(n) denote the number of integer partitions of n with exactly k
parts, and let pdistinctk (m) denote the number of integer partitions of m
into exactly k distinct parts.
(a) List the integer partitions of 7 with 3 parts. List the integer partitions

of 10 with 3 distinct parts. Conclude p3(7) = pdistinct3 (10).
(b) Prove that

pk(n) = pdistinctk

(
n+

k(k − 1)

2

)
by defining an appropriate bijection. (Make sure you show that your
proposed bijection is actually a bijection!)

(2) Let Qn denote the hypercube graph, i.e. the graph whose vertices are
length-n sequences of zeroes and ones, where two sequences are connected
by an edge if they differ in only one place. How many edges does Qn have?
What is χ(Qn)?

Solution sketch.

(1) (a) We have p3(7) = 4; the partitions are:

5 + 1 + 1, 4 + 2 + 1, 3 + 3 + 1, 3 + 2 + 2.

We also have pdistinct3 (10) = 4; the partitions are:

7 + 2 + 1, 6 + 3 + 1, 5 + 4 + 1, 5 + 3 + 2.

(b) We define a bijection F . Given a partition of n, call it ak + ak−1 +
· · ·+a2+a1 with ak ≥ ak−1 ≥ · · · ≥ a1, we have F send this partition

to the partition of n+ k(k−1)
2 given by (ak + k− 1) + (ak−1 + k− 2) +

· · ·+ (a2 + 1) + (a1 + 0). That is, we add zero to the smallest part,
one to the next smallest part, and so on.

The reason we end with with a partition of n+ k(k−1)
2 is that we have

added 0 + 1+ 2+ · · ·+ (k− 1) = k(k−1)
2 to our original partition of n.

We claim that the parts of the output partition are distinct. Indeed,
we know ai ≥ ai−1, so ai + (i− 1) > ai−1 + (i− 2).
Finally, F is a bijection because the above operation is reversible –

given a partition of n+ k(k−1)
2 into k distinct parts, we subtract k− 1

from the largest part, k − 2 from the next largest part, and so on.
This is an inverse to the F .

(2) Given a length-n sequence of zeroes and ones, the number of ways to
change a single entry is n. That is, Qn is n-regular. Since Qn has 2n

vertices, the degree-sum formula then says that Qn has n·2n
2 = n · 2n−1

edges. We also have χ(Qn) = 2, since we can colour a sequence red if it
has an even number of ones, and blue otherwise, and this gives a valid
2-colouring.



APPENDIX B

Graph Theory Summary

1. Definitions

Definition 1.1 (Graph). A (simple) graph is a pair G = (V,E), where V is
a finite set (“vertices”) and E is a set (“edges”) of unordered pairs {v, w}, where
v, w ∈ V. (Sometimes we allow duplicate edges and loops, in which case G is called
a multigraph.)

Definition 1.2 (Degree). The degree deg(v) of a vertex v of a graph is the
number of edges1 incident to v.

Definition 1.3 (Regular graph). A graph G is k-regular if deg(v) = k for
every vertex v.

Definition 1.4 (Subgraph). A subgraph of a graph G = (V,E) is a graph
whose vertices are a subset of V and whose edges are a subset of E.

Definition 1.5 (Spanning subgraph). A subgraph H of G = (V,E) is a
spanning subgraph if H has vertex set V .

Definition 1.6 (Induced subgraph). Given a graph G = (V,E) and a subset
U ⊆ V, the subgraph of G induced by U is the subgraph of G consisting of the
vertices U and all edges of G connecting vertices of U .

Definition 1.7 (Isomorphic graphs, graph isomorphism, graph auto-
morphism). An isomorphism from a (simple) graph G = (V,E) to a (simple) graph
G′ = (V ′, E′) is a bijection ϕ : V → V ′ such that vertices v1, v2 ∈ V are connected
by an edge of G if and only if ϕ(v1), ϕ(v2) ∈ V ′ are connected by an edge of G′.
Two (simple) graphs are isomorphic if there exists an isomorphism between them.
(That is, they are the same after renaming vertices.) An automorphism of a (simple)
graph G is an isomorphism from G to itself. (Note: Isomorphisms of multigraphs
are somewhat more complicated and we don’t mention them.)

Definition 1.8 (Walk, closed walk, path, cycle). A walk in a graph is a
sequence of the form

v1, e1, v2, e2, . . . , vk−1, ek−1, vk,

where ei connects vi to vi+1. A closed walk is a walk such that vk = v1. (We often
do not bother specifying the starting point of a closed walk.) A path in a graph
is a walk with no repeated vertices2. A cycle in a graph is a closed walk with no
other repeated vertices (other than the start/end)3. (Note: We haven’t used the
term walk much, and I won’t use it on the exam without clarification.)

1In a multigraph, loops, if any, are counted twice
2Alternatively, a subgraph isomorphic to a path graph Pn
3Alternatively, a subgraph isomorphic to a cycle graph Cn. Note that 1-cycles and 2-cycles are
impossible in a simple graph

83
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Definition 1.9 (Connected graph). A graph G is connected if for any two
vertices v1, v2, there is a path in G from v1 to v2. The maximal connected subgraphs
of G are called connected components.

Definition 1.10 (Tree, rooted tree, leaf). A graph G is a tree if it connected
and acyclic (contains no cycles). A rooted tree is a tree with a distinguished vertex.
A leaf of a tree is a degree-1 vertex.

Definition 1.11 (Colouring, chromatic number χ(G)). A (vertex) colouring
of a graph G is an assignment of a colour to each vertex so that adjacent vertices
have different colours. The chromatic number of a graph is the least number of
colours used in any colouring.

Definition 1.12 (Bipartite graph, multipartite graph). A graph is k-
partite if there exists a proper vertex colouring with k colours. (That is, G is
k-partite if χ(G) ≤ k.)

Definition 1.13 (Eulerian circuit, Eulerian graph). An Eulerian circuit
of a graph is a closed walk that traverses each edge exactly once. A graph that has
an Eulerian circuit is caller Eulerian.

Definition 1.14 (Hamiltonian cycle, Hamiltonian graph). A Hamiltonian
cycle of a graph is a closed walk that visits each vertex exactly once. A graph that
has a Hamiltonian cycle is called Hamiltonian.

Definition 1.15 (Independent set of vertices, vertex independence
number indV (G)). A subset I of the vertices of a graph G is an independent set if
no two elements of I are adjacent in G. The vertex independence number indV (G)
of G is the largest possible size of an independent set of vertices.

Definition 1.16 (Independent set of edges, matching, perfect match-
ing, matching number indE(G)). A subset M of the edges of a graph G is an
independent set, or a matching, if no two elements of M share an endpoint. A
matching that spans G (touches every vertex) is a perfect matching. The edge
independence number, or matching number, indE(G), of G is the largest possible
size of a matching.

Definition 1.17 (Planar). A graph is planar if it can be drawn in R2 with no
edge crossings.

Definition 1.18 (Edge contraction). Given a graph G and an edge e,
contracting e yields a new graph where e has been “shrunk to a point”. That is, the
edge e disappears, its two endpoints are merged, and all other connectivity remains
as in G. (See Section 12 for several examples.)

Definition 1.19 (Minor). A graph H is a minor of G if H can be obtained
from G by a sequence of edge contractions, edge deletions, and vertex deletions.
(Deleting a vertex also means deleting all incident edges.)

Definition 1.20 (Ramsey number). For positive integers k, ℓ, the Ramsey
number R(k, ℓ) is the smallest n such that every 2-edge-colouring of Kn has either
a red Kk or a blue Kℓ.
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2. Some examples of graphs:

Example 2.1 (Complete graph Kn, path Pn, cycle Cn, star Sn). h
Complete graph Kn: n vertices, any two distinct vertices connected by an edge.

Path Pn:
•
1

•
2

•
3

•
4

•
5

· · · •
n− 1

•
n

Cycle Cn:
•
1

•
2

•
3

•
4

•
5

· · · •
n− 1

•
n

Star Sn:

•2
•3
• ...•
•n− 1
•n

•1

Example 2.2 (Complete bipartite Ka,b, complete multipartite Ka1,...,ar
).

The complete bipartite graph Ka,b has a+ b vertices

u1, . . . , ua, v1, . . . , vb,

and an edge between ui and vj for all possible i and j.
The complete multipartite graph Ka1,...,ar

has a1 + · · ·+ ar vertices

v1,1, . . . , v1,a1 , v2,1, . . . , v2,a2 , . . . , vr,ar ,

and an edge between vi,k and vi′,k′ if i ̸= i′, for all possible k and k′.

Example 2.3 (Petersen graph). Here is the Petersen graph. It is often a
useful example and has been extensively studied — historically, it has been the
smallest counterexample to a surprising number of false conjectures.

3. Some problems involving graphs

These are the kinds of problems involving graph we have mentioned. For each
one, I note some of our observations.

Graph colouring Problems.

Problem 1 (Vertex colouring). Given a graph G, calculate the chromatic
number χ(G).

• Easy lower bound: χ(G) is bounded below by the size of the largest
complete subgraph in G.

• Easy upper bound: χ(G) ≤ ∆(G)+1, where ∆(G) is the maximum degree
of a vertex. (Greedy algorithm exercise)

• Bipartite is the same, by definition, as χ(G) = 2. This is equivalent to G
having no odd cycles (Theorem 6.7).

• χ(Kn) = n, and χ(Cn) is 2 (n even) or 3 (n odd).
• Four colour theorem (Theorem 13.1): If G is planar, χ(G) ≤ 4.
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• χ(G) may be much larger than the size of the largest complete subgraph
in G; The optional material Mycielski’s Theorem (Theorem 16.1) gives
graphs with high chromatic number with no triangles.

Graph Traversal Problems.

Problem 2 (Eulerian circuit). Given a graph G, decide whether G has an
Eulerian circuit.

• Solved! Easy necessary and sufficient condition: Euler’s Theorem (Theorem
8.4)

Problem 3 (Hamiltonian cycle). Given a graph G, decide whether G has a
Hamiltonian cycle.

• Some easy necessary conditions, e.g. G must be connected and have no
leaves.

• A sufficient condition (far from necessary): Dirac’s Theorem (Theorem
9.5)

Graph “Packing Problems”.

Problem 4 (Vertex Independence Number indV (G)). Given a graph G, find
the largest possible size of an independent set of vertices in G.

• indV (G)χ(G) ≥ |V |, since each colour class is an independent set.

Problem 5 (Matching/Edge-Independence Number indE(G)). Given a graph
G, find the largest possible size of a matching in G.

• If there is a matching M with no unmatched vertices, then indE(G) = |M |,
and M called a perfect matching.

• Bipartite case: If A and B are the partite sets with |A| ≤ |B|, best-case
scenario is the existence of a matching of A. Necessary and sufficient
condition: Hall’s Theorem (Theorem 10.3).

Determining Planarity.

Problem 6. Given a graph G, is G planar?

• Necessary and sufficient condition: Kuratowski-Wagner Theorem (Theorem
12.6).

Ramsey Theory Problems.

Problem 7. What kinds of structures exist in all large graphs?

• Ramsey’s Theorem (Theorem 14.5): A graph with sufficiently many vertices
has a large complete subgraph or a large independent set.

Problem 8. What are the values of the Ramsey numbers R(k, ℓ)?

• We showed R(3, 3) = 6 and R(3, 4) ≤ 10 in lecture. (R(3, 4) = 9 is proved
in the lecture notes.)

• The proof of Ramsey’s Theorem (see Corollary 14.10) implies R(k, ℓ) ≤(
k+ℓ−2
k−1

)
.

• Erdős gave (Theorem 14.13, a simple probabilistic argument) the lower
bound R(k, k) > 2k/2.
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4. Main Theorems:

Proposition 2.5 (Degree-sum formula). Let G = (V,E) be a graph. Then4∑
v∈V deg(v) = 2 |E| .

Theorem 5.14 (Characterization of trees). Let G = (V,E) be a graph. The
following are equivalent:

(1) G is a tree. (That is, G is connected and acyclic.)
(2) G is connected and |V | = |E| − 1.
(3) G is acyclic and |V | = |E| − 1.
(4) Any two vertices in G are connected by a unique path.
(5) G is connected, but deleting any edge of G yields a disconnected graph.
(6) G is acyclic, but adding an edge between any two vertices of G yields a

graph with a cycle.

Unexaminable: Theorem 17.2 (Cayley’s Formula, known at least as early as
1860 (Borchardt)). Given a (labeled) vertex set V = {v1, . . . , vn}, there are nn−2

different trees with vertex set V .

Theorem 8.4 (Euler’s Theorem, 1736). A graph is Eulerian if and only if it is
connected and every vertex has even degree.

Theorem 9.5 (Dirac’s Theorem, 1952). If every vertex of a simple graph G = (V,E)
has degree at least |V | /2, then G is Hamiltonian.

Theorem 6.7 (Characterization of bipartite graphs). A graph is bipartite if and
only if it has no odd cycles.

Unexaminable: Theorem 16.1 (Mycielski’s Theorem, 1955 (similar: Tutte 1947,
Zykov 1949)). For all r ≥ 2, the Mycielski graph Mr is triangle-free and has
chromatic number r.

Theorem 10.3 (Hall’s Theorem, 1935). Let G be a bipartite graph with partite
sets A and B. Then G has a matching of A if and only if G satisfies Hall’s condition;
that is, for every S ⊆ A we have |NG(S)| ≥ |S| , where

NG(S) = {b ∈ B : b is adjacent to s for some s ∈ S}.

Theorem 11.8 (Euler’s Formula (Euler/Cauchy/etc, 1750-1811)). Let G be a
planar graph, drawn with v vertices, e edges, and f faces. Then v − e+ f = 2.

Corollary 11.11. A simple planar graph with n vertices has at most 3n− 6 edges.

Corollary 11.13. A simple planar graph has a vertex with degree at most 5.

Corollaries 11.14 and 11.15. K5 and K3,3 are not planar.

Theorem 12.6 (Kuratowski-Wagner, 1930/1937). A graph G is planar if and only
if it does not have K3,3 or K5 as a minor.

Theorem 13.1 (Four/Five colour Theorem, Appel-Haken 1976-1989, Heawood
1890). If G is a simple planar graph, then χ(G) ≤ 4. (Proved χ(G) ≤ 5 in lecture.)

Theorem 14.5 (Ramsey’s Theorem, 1930). Fix positive integers k and ℓ. Then for
sufficiently large n, every 2-edge-colouring of Kn contains a red Kk or a blue Kℓ.

4In the case of non-simple graphs, make sure you count degrees correctly here!
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Corollary 14.10 (Upper bound for Ramsey numbers). The Ramsey number R(k, ℓ)

satisfies R(k, ℓ) ≤
(
k+ℓ−2
k−1

)
.

Theorem 14.13 (Erdös lower bound for Ramsey numbers, 1947). The Ramsey
number R(k, k) satisfies R(k, k) > 2k/2.

Unexaminable: Theorem 15.1 (Erdös 1959). Fix positive integers k and r. Then
there exists a graph with no cycles of length ≤ k whose chromatic number is at least
r.
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