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1 INTRODUCTION

1 Introduction

This module substantially generalizes the analysis on the real line numbers studied in pre-
vious analysys modules (Analysis I-III, Mathematical Analysis I-III). We will use Analysis
to refer to material from any of these modules. You are expected to know this material. In
addition, you are expected to know basic things about vector spaces.

1.1 Recommended Books

In addition to these notes, the following books cover the content of the course and are
recommended.

� W. A. Sutherland, Introduction to Metric and Topological Spaces, Oxford University
Press, first edition 1975, second edition 2009. (This is the top recommendation.)

� E. T. Copson, Metric Spaces, Cambridge University Press, first edition 1968

� W. Rudin, Principles of Mathematical Analysis, McGraw Hill, first edition 1953. (This
is known in the trade as “baby Rudin”, to distinguish from his more advanced text
“Real and Complex Analysis”. It is something of a classic but a Mathematical As-
sociation of America review in 2007 wrote “There is probably no more well known,
respected, loved, hated, and feared text in all of mathematical academia”. The re-
view also contains the quotes “It was easy to say, and often true, that anyone who
could survive a year of Rudin was a real mathematician” (Steven Krantz) and “Bour-
bakian propaganda, stripping and sterilizing analysis of any soul or meaning beyond
the symbols” (Vladimir Arnold).)

� G. W. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill. (More
advanced, although it starts at the beginning; helpful for several third year and fourth
year modules in analysis.)

� A. M. Gleason, Fundamentals of Abstract Analysis, first edition 1966 (Addison–Wesley),
now published by CRC Press. (Only Chapter 14 is relevant to the module.)

1.2 Notation

We will use the following notation throughout the course.

� ∅ denotes the empty set.

� ∈ denotes “is an element of”.

� ∪ and ∩ denote union and intersection, respectively. (We will also use
⋃

and
⋂

for
unions and intersections over families of sets.)

� ⊂ denotes “is a subset of” (i.e. A ⊂ B means that if a ∈ A then a ∈ B). If A is
a proper subset of B then we will write A ⊂ B and A ̸= B. (In practice, when the
properness of a subset is important the fact that it is a subset is obvious so we’ll only
need to write A ̸= B or B \ A ̸= ∅.)
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1.3 Brief overview 1 INTRODUCTION

� C denotes the set of complex numbers, R the set of real numbers, Q the set of rational
numbers, Z the set of integers, and N the set of natural numbers {1, 2, 3, . . .}. We also
write R+ = {x ∈ R : x ≥ 0}.

� For a, b ∈ R, we denote open, closed and half-open intervals by (a, b) = {x ∈ R : a <
x < b}, [a, b] = {x ∈ R : a ≤ z ≤ b}, (a, b] = {x ∈ R : a < x ≤ b}, [a, b) = {x ∈
R : a ≤ z < b}.

� For sets A and B, A×B will denote their Cartesian product, i.e. A×B = {(a, b) : a ∈
A, b ∈ B}. (One must distinguish between (a, b) denoting an ordered pair, as here,
with (a, b) denoting an open interval, as above.) This can be generalised to any finite
product of sets.

� For n ≥ 2, Rn is the Cartesian product of R with itself n times.

� Let Aα, α ∈ Y , be a collection of sets indexed by an arbitrary set Y . Here, the product∏
α∈Y Aα is interpreted as the set of all functions f : A →

⋃
α∈Y Aα with the property

that f(α) ∈ Aα. (To understand why, see Appendix 9.2.)

� If Aα = X, for all α ∈ Y , then we can write the above product as XY and note that
it is the set of all functions f : Y → X.

� A set A is countable if it is in bijection with a subset of N or, equivalently, if there is
an injection from A to N. A countable set may be finite or infinite, in which case we
call it countably infinite. The empty set is countable.

1.3 Brief overview

The aim of the module is to generalise some of the concepts you have seen in earlier analysis
modules to more abstract settings. Given a set X, we want to understand what it means
for a sequence (xn) in X to converge to x ∈ X, what we mean by taking a limit limx→a

in X and, given another set Y , what it means for f : X → Y to be continuous. All these
concepts involve ideas of closeness and, in fact, without any additional structure on X and Y
to measure closeness, they cannot be given any meaning. So it is fundamental to the subject
that we will need to introduce some king of additional structure that measures closeness.

Let us think about X = R and convergence of sequences. Without getting into the ϵs,
we know that “(xn) converges to x” has the same meaning as “|xn − x| converges to zero”
or, put more loosely, “the distance between xn and x tends to zero”. We could do the same
think on any set provided we have a sensible notion of distance. The object we allow as
distances are called metrics and are defined in section 3. They can be quite abstract and
don’t necessarily match our physical notion of distance. Therefore, before we get to the
abstractions of metrics, the next section will discuss something which appears more natural:
the notion of norm of vectors. Norms can be used to define distances and these turn out to
be a special and natural class of metrics.

However, our abstract does not stop with metrics. It turns out that ideas of conver-
gence and continuity can be expressed without using a distance, though there must be some
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1.4 Sets, functions, images and pre-images. 1 INTRODUCTION

substitute that allows us to think about closeness. This concept is called a topology and is
introduced in section 5.

The later parts of the module, in sections 7, 8 and 9, introduce the three important
concepts of compactness, connectedness and completeness but it is too early to describe
what these things mean.

1.4 Sets, functions, images and pre-images.

In the course, we often have to look at the pre-images of sets under functions and it is
worthwhile recapping the basic definitions and properties that we’ll meet and use.

Let X and Y be sets and let f : X → Y be a function. The image f(A) of a set A ⊂ X
is defined to be

f(A) = {f(x) : x ∈ A}.

Regardless of whether or not f is invertible, we define the pre-image f−1(B) of B ⊂ Y to be

f−1(B) = {x ∈ X : f(x) ∈ B}.

Our use of “f−1” in the notation f−1(B) does not mean that f necessarily has an inverse.
However, if f is invertible then

{x ∈ X : f(x) ∈ B} = {f−1(y) : y ∈ B},

so f−1(B) is both the pre-image of B under f and the image of B under f−1, and the
notation is unambiguous.

We will use the following identities. If f : X → Y is a function and {Bi} is an arbitrary
collection of subsets of Y then

f−1

(⋃
i

Bi

)
=
⋃
i

f−1(Bi) and f−1

(⋂
i

Bi

)
=
⋂
i

f−1(Bi).

(Check that these follow from the definition of pre-image.) Furthermore, if f is invertible
and {Ai} is an arbitrary collection of subsets of X then

f

(⋃
i

Ai

)
=
⋃
i

f(Ai) and f

(⋂
i

Ai

)
=
⋂
i

f(Ai),

and the statement for the union still holds even if f is not invertible. However, the statement
for the intersection need not hold if f is not invertible. For example, define f : R → [0,∞)
by f(x) = x2 and let A1 = (−∞, 0], A2 = [0,−∞). Then f(A1 ∩ A2) = f({0}) = {0} but
f(A1) ∩ f(A2) = [0,∞) ∩ [0,∞) = [0,∞).

1.5 Non-examinable content

Not

examinable

Some parts of the lecture notes were not lectured or just not examinable in the year 2023-
2024.

5



1.5 Non-examinable content 1 INTRODUCTION

These are highlighted like this.

Please note that occasionally a statement of a theorem is examinable,
Not

examinablebut its proof is not.
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2 NORMED SPACES

2 Normed Spaces

2.1 Norms

A norm on a vector space is a generalised notion of “length” of a vector. You will have seen
examples before but let us make a general definition. Let X be a vector space over R or C.

Definition 2.1. A norm on a vector space X is a map ∥ · ∥ : X → R+ such that

(i) ∥x∥ = 0 if and only if x = 0;

(ii) ∥λx∥ = |λ|∥x∥ for every λ ∈ R (or C), x ∈ X (“homogeneity”); and

(iii) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for every x, y ∈ X (the triangle inequality).

Note that if we started with only requiring ∥ ·∥ : X → R then in fact it follows automatically
that ∥x∥ ≥ 0 given (i)–(iii), since we have

0 = ∥0∥ = ∥x+ (−x)∥ ≤ ∥x∥+ ∥ − x∥ = ∥x∥+ ∥x∥ = 2∥x∥

using first (i), then (iii), then (ii).

Example 2.2. We begin with what should be a familiar example (at least for n = 2 and 3).
In the vector space Rn, for x = (x1, . . . , xn) define

∥x∥ =

(
n∑

j=1

|xj|2
)1/2

,

the “standard norm” or “Euclidean norm”.
Let us check that this is indeed a norm. If x = 0 then ∥x∥ = 0, and if ∥x∥ = 0 then

|xj| = 0 for every j, i.e. x = 0, which gives (i). For (ii) we have

∥λx∥ =

(
n∑

j=1

|λxj|2
)1/2

=

(
n∑

j=1

|λ|2|xj|2
)1/2

= |λ|∥x∥,

as required. It is usually the triangle inequality the requires some work to prove, and this is
the case here.

Not

examinableLet x · y denote the usual “dot product”: x · y =
∑n

j=1 xjyj. We have

∥x+ y∥2 = (x+ y) · (x+ y) = ∥x∥2 + 2x · y + ∥y∥2

≤ ∥x∥2 + 2∥x∥∥y∥+ ∥y∥2

≤ (∥x∥+ ∥y∥)2

using the inequality |x · y| ≤ ∥x∥ ∥y∥.
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2.1 Norms 2 NORMED SPACES

However, in addition to the Euclidean norm, there are many other possibilities for norms
on Rn. Here are two easy examples:

∥x∥1 =
n∑

j=1

|xj|

and
∥x∥∞ = max

j=1,...,n
|xj|.

These are both norms on Rn. Proving the triangle inequality for these norms is almost
trivial, since |xj + yj| ≤ |xj| + |yj|. We will see more examples soon but first we develop
some more theory.

Definition 2.3. If X is a vector space and ∥ · ∥ is a norm on X, the pair (X, ∥ · ∥) is a
normed space.

Many spaces have a “standard norm”, so for example Rn is usually Rn with the Euclidean
norm, or it is clear that we are working with a particular norm. Thus, we might talk about
“the normed space X” rather than the normed space (X, ∥·∥) since this is less of a mouthful.

The (closed) unit ball in (X, ∥ · ∥) is the set

BX := {x ∈ X : ∥x∥ ≤ 1}.

(Note that this depends on which norm we choose but, for simplicity, we supress this in the
notation. We are using a gothic letter B here because we want to reserved the usual B for
open balls, which appear later and which play a much more important role.)

We will now show that the unit ball is always convex (defined below). This will turn out
to be a useful property.

Definition 2.4. Let X be a vector space. A subset K of X is convex if whenever x, y ∈ K
and 0 ≤ λ ≤ 1 we have λx+ (1− λ)y ∈ K. (Put more informally, a set is convex if the line
segment joining any two points in the set is entirely contained in the set.)

Lemma 2.5. In any normed space (X, ∥ · ∥), the closed unit ball BX is convex.

Proof. If x, y ∈ BX then ∥x∥ ≤ 1 and ∥y∥ ≤ 1. Then, for 0 < λ < 1,

∥λx+ (1− λ)y∥ ≤ |λ|∥x∥+ |1− λ|∥y∥ ≤ λ+ (1− λ) = 1,

so λx+ (1− λ)y ∈ BX.

[NB: In an entirely similar way the open unit ball {x ∈ X : ∥x∥ < 1} is also convex.]

We now give a relatively simple way to check that a particular function defines a norm,
based on the convexity of the “closed unit ball” that this function would give rise to.
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2.1 Norms 2 NORMED SPACES

Not

examinableLemma 2.6. Suppose that a function N : X → R≥0 satisfies (i) and (ii) of the definition of
a norm and, in addition, that the set B := {x ∈ X : N(x) ≤ 1} is convex. Then N satisfies
the triangle inequality

N(x+ y) ≤ N(x) +N(y)

and so defines a norm on X.

Proof. We only need to prove the triangle inequality. If N(x) = 0 then x = 0 and

N(x+ y) = N(y) = N(x) +N(y),

so we can assume that N(x) > 0 and N(y) > 0.
In this case x/N(x) ∈ B and y/N(y) ∈ B, so using the convexity of B we have

N(x)

N(x) +N(y)

(
x

N(x)

)
+

N(y)

N(x) +N(y)

(
y

N(y)

)
∈ B.

So
x+ y

N(x) +N(y)
∈ B,

which means, using property (ii) from Definition 2.1 that

N

(
x+ y

N(x) +N(y)

)
=

N(x+ y)

N(x) +N(y)
≤ 1 ⇒ N(x+ y) ≤ N(x) +N(y),

as required.

To apply Lemma 2.6 in examples, we often have to use that some real-valued function is
convex. Recall that a function f : [a, b] → R is convex if whenever x, y ∈ [a, b] we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1. (1)

If f ∈ C2((a, b)) ∩ C1([a, b]) then a sufficient condition for convexity of f is that f ′′(x) ≥ 0
for all x ∈ (a, b) (see Problem Sheet 1). In particular, we will use the fact that the function
s 7→ |s|p is convex for all 1 ≤ p < ∞ (proof also on Problem Sheet 1).

We are now in a position to introduce more norms on Rn.

Example 2.7. For 1 ≤ p < ∞ the p-norm on Rn is given by

∥x∥p :=

(
n∑

j=1

|xj|p
)1/p

1 ≤ p < ∞.

(The standard norm corresponds to the choice p = 2.) For p = ∞, we already defined the
∞-norm above:

∥x∥∞ = max
j=1,...,n

|xj|.
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2.1 Norms 2 NORMED SPACES

We have ∥x∥∞ = limp→∞ ∥x∥p for any x ∈ Rn, so there is some consistency in these definitions
(see Problems Sheet 1).

We need to check that ∥ · ∥ℓp are really norms. Properties (i) and (ii) are easy to check
(as we did for ∥ · ∥ = ∥ · ∥ℓ2 above) and the hard part is to show that the triangle inequality
holds. In fact, this is a standard inequality, called Minkowski’s inequality, and it is proved
in the next lemma.

Lemma 2.8 (Minkowski’s inequality in Rn). For all 1 ≤ p ≤ ∞, if x, y ∈ Rn then

∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp . (2)

Not

examinableProof. If p = ∞ this is straightforward. For 1 ≤ p < ∞ we will use Lemma 2.6 and show
that the set

B := {x ∈ Rn : ∥x∥ℓp ≤ 1} = {x ∈ Rn : ∥x∥pℓp ≤ 1}

is convex. To do this, we use the fact that the function t 7→ |t|p is convex (see Problem Sheet
1) for all 1 ≤ p < ∞. If x, y ∈ B then

∥λx+ (1− λ)y∥pℓp =
n∑

j=1

|λxj + (1− λ)yj|p

≤
n∑

j=1

λ|xj|p + (1− λ)|yj|p ≤ 1,

and so λx+ (1− λ)y ∈ B and B is convex; inequality (2) now follows from Lemma 2.6.

We note down a particular case of this which we will use later:

{(α1 + β1)
p + (α2 + β2)

p}1/p ≤ (αp
1 + αp

2)
1/p + (βp

1 + βp
2)

1/p. (3)

In some sense that we will return to later, all these norms on Rn are “very similar”.

Definition 2.9. Two norms ∥·∥1 and ∥·∥2 on X are called equivalent if there exist constants
0 < c1 ≤ c2 such that

c1∥x∥1 ≤ ∥x∥2 ≤ c2∥x∥1 for every x ∈ X.

It is easy to check that this is an equivalence relation.

Two norms are equivalent if and only if there exist constants 0 < c1 ≤ c2 such that

c1B(X,∥·∥2) ⊂ B(X,∥·∥1) ⊂ c2B(X,∥·∥2),

where B(X,∥·∥j) is the closed unit ball in (X, ∥ · ∥j), j = 1, 2, i.e. you can sandwich B(X,∥·∥1)
between two scaled copies of B(X,∥·∥2).

The next family of examples are given by spaces of sequences.
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2.1 Norms 2 NORMED SPACES

Example 2.10. The sequence space ℓp, 1 ≤ p < ∞, consists of all sequences x = (xj)
∞
j=1

such that
∞∑
j=1

|xj|p < ∞

(“pth power summable sequences”) equipped with the norm

∥x∥ℓp =

(
∞∑
j=1

|xj|p
)1/p

; (4)

and ℓ∞ is the space of bounded sequences equipped with the norm

∥x∥ℓ∞ = sup
j

|xj|. (5)

The spaces ℓp are all vector spaces, since if x, y ∈ ℓp we have

n∑
j=1

|xj + yj|p ≤
n∑

j=1

(2max(|xj|, |yj|))p

≤
n∑

j=1

2p max(|xj|p, |yj|p)

≤ 2p

(
n∑

j=1

|xj|p +
n∑

j=1

|yj|p
)
,

and so
∑∞

j=1 |xj + yj|p < ∞, i.e. x+ y ∈ ℓp. (The other vector space properties are trivial to
check.)

These spaces are infinite dimensional: define for each j ∈ N the sequence

e(j) = (0, 0, . . . , 1, 0, . . .)

which consists entirely of zeros apart from having 1 as its jth term. For any choice of
n ∈ N, the elements {e(1), . . . , e(n)} are linearly independent, which shows that ℓp is infinite
dimensional.

Note that for any 1 ≤ q < p ≤ ∞ there are elements of ℓp that are not elements of ℓq,
e.g. the sequence x = (xj)

∞
j=1 with xj = j−1/q. So the spaces not only have different norms,

they consist of different elements.

We can deduce that (4) and (5) do indeed define norms on ℓp using Lemma 2.8.

Lemma 2.11 (Minkowski’s inequality in ℓp). For all 1 ≤ p ≤ ∞ if x, y ∈ ℓp then x+ y ∈ ℓp

and
∥x+ y∥ℓp ≤ ∥x∥ℓp + ∥y∥ℓp . (6)
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2.2 Subspaces 2 NORMED SPACES

Not

examinableProof. The case p = ∞ is once again straightforward. For p ∈ [1,∞), given x, y ∈ ℓp, we
can use inequality (2) to guarantee that(

n∑
j=1

|xj + yj|p
)1/p

≤

(
n∑

j=1

|xj|p
)1/p

+

(
n∑

j=1

|yj|p
)1/p

≤ ∥x∥ℓp + ∥y∥ℓp ;

now we can take the limit as n → ∞ to deduce (6).

It is worth observing that these ℓp spaces are nested; the largest is ℓ∞ and the smallest
ℓ1, see the Problems Sheet 1.

2.2 Subspaces

If (X, ∥ · ∥) is a normed space and Y is a subspace of X, then (Y, ∥ · ∥) is another normed
space. (Strictly we define ∥ · ∥Y : Y → [0,∞) as the restriction of ∥ · ∥ to Y , i.e. ∥y∥Y = ∥y∥
for every y ∈ Y .)

For example, c0, the space of all null sequences, is a subspace of ℓ∞. The space c00, the
space of all sequences with only a finite number of non-zero terms, is a subspace of ℓp for all
p ∈ [1,∞]. (See Problems Sheet 1.)

2.3 Spaces of continuous functions

We denote by C([a, b]) the space of (real-valued) continuous functions on the interval [a, b].
The usual norm to use on C([a, b]) is the supremum (maximum) norm

∥f∥∞ := sup
x∈[a,b]

|f(x)| = max
x∈[a,b]

|f(x)|

(since any continuous function on a closed bounded interval attains its bounds).
Another family of norms are defined on C([a, b]) using an integral: for p ∈ [1,∞) set

∥f∥Lp :=

(∫ b

a

|f(x)|p dx
)1/p

.

(See Problems Sheet 1.)
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3 Metric Spaces

In many situations we will be less concerned with the idea of length than with a generalised
notion of “distance”. We can also define a “distance” in a much more general setting.

3.1 Definition of a metric space and examples

Let X be any set. We will define a notion of distance between elements of X.

Definition 3.1. A metric d on a set X is a map d : X ×X → R+ such that

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for every x, y ∈ X; and

(iii) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X (triangle inequality).

Note that given (i)–(iii) we could assume just that d maps into R, since

0 = d(x, x) ≤ d(x, y) + d(y, x) = d(x, y) + d(x, y) = 2d(x, y)

(using (i), then (iii), then (ii)).

We call (X, d) a metric space. (Often, we don’t explicitly mention the metric and just write
that X is a metric space.)

To relate this to the previous section, we can see that any norm ∥ · ∥ on a vector space
X gives rise to a metric on X by setting d(x, y) = ∥x− y∥.

Lemma 3.2. If X is a vector space and ∥ · ∥ : X → R is a norm, then d(x, y) := ∥x− y∥ is
a metric on X.

Proof. (i) If x = y then d(x, y) = ∥x− y∥ = 0; if d(x, y) = ∥x− y∥ = 0 then x = y.
(ii) d(x, y) = ∥x− y∥ = ∥y − x∥ = d(y, x).
(iii) d(x, z) = ∥x− z∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z).

We will now give some examples.

Example 3.3. Take X = Rn with any one of the metrics

dp(x, y) := ∥x− y∥ℓp , 1 ≤ p ≤ ∞.

The “standard metric” or “Euclidean metric” on Rn is given by

d2(x, y) = ∥x− y∥ℓ2 =

(
n∑

j=1

|xj − yj|2
)1/2

.

This is the metric we use of Rn (or subsets of Rn) if none is specified.

In the following examples, X is no longer required to be a vector space. You should check
for yourself that they satisfy the definition of a metric.

13
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Example 3.4. The discrete metric on any non-empty set X is defined by setting d(x, x) = 0
and d(x, y) = 1 if x ̸= y. (This is useful for counterexamples, since it is very different from
the metric arising from a norm.)

Example 3.5. Let X be the set of all genes (N character sequences of the four symbols
ATGC). Then the Hamming distance between x, y ∈ X is the number of different pairs. For
example, for N = 4, d(AAAC,AAAA) = 1 and d(TGAC,AGAA) = 2. (You could define
a similar metric on any collection of N -character sequences of n symbols, for any choice of
n ≥ 2.)

Example 3.6. Let X be the set of all words (finite sequences of n = 26 symbols). Then the
Levenshtein (spelling) distance between x and y is the minimum number of ‘edits’ required
to change from x to y, where an ‘edit’ is any one of (i) insertion of a symbol (ii) deletion of
a symbol (iii) change of a letter.

Example 3.7. Let G be a graph (a set of vertices joined by edges). The combinatorial
metric (also known as graph distance or shortest path distance) defined on the vertices of
G is the minimal number of edges required to join the two vertices. (For this definition, we
need to assume that each pair of vertices can be joined by a path in the graph.)

Example 3.8. Sunflower metric on R2:

d(x, y) =

{
∥x− y∥ if x and y lie on same line through the origin

∥x∥+ ∥y∥ otherwise.

Example 3.9. Jungle river metric on R2:

d((x1, y1), (x2, y2)) =

{
|y1 − y2| if x1 = x2

|y1|+ |x1 − x2|+ |y2| otherwise.

3.2 Metrics on subsets and products

If (X, d) is a metric space and A is a subset of X, then d|A is also a metric on A, i.e. we can
define dA : A× A → [0,∞) by setting

dA(a1, a2) := d(a1, a2), a1, a2 ∈ A.

In this case (A, dA) is a (metric) subspace of (X, d), and is also a metric space in its own
right: we usually just write (A, d) for simplicity.

Example 3.10. Consider the metric space (R, d2). Then (A, d2) is another metric space for
any A ⊂ R, e.g. [0, 1] (with the usual metric).

Question. Consider (R3, d2), that is R3 in the standard (Euclidean) metric. Let A ⊂ R3 be
a sphere of radius R. What is the distance of two antipodal (i.e. opposite, like North and
South poles) points in (A, d2)? Is it 2R or πR?

14
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Example 3.11. Let (X, d) be the set of all words (of arbitrary finite length) equipped with
the spelling metric. Let XN be the set of all words of fixed length N ; then (XN , d) is another
metric space. It is interesting to note that d is not (in general) the same as the Hamming
distance on XN . For example, take N = 4 and consider the words HEAR and EARN. Then
dHamming(HEAR,EARN) = 4 but, by performing the edits HEAR → EAR → EARN, we see
that the spelling distance d(HEAR,EARN) = 2.

Given two sets X and Y , their product X × Y consists of all elements of the form (x, y),
with x ∈ X and y ∈ Y . If both X and Y have metrics, it is easy to define a metric on X×Y ;
in fact we have quite a choice.

Lemma 3.12. Let (X, dX) and (Y, dY ) be two metric spaces. Then, for any 1 ≤ p ≤ ∞,

ϱp
(
(x, y), (x′, y′)

)
:=

{
(dX(x, x

′)p + dY (y, y
′)p)1/p for 1 ≤ p < ∞

max
(
dX(x, x

′), dY (y, y
′)
)

for p = ∞,

defines a metric on X × Y .

The proof of the triangle inequality is a little painful to write down for a general p. It is
very easy, though, if you take p = 1 when

ϱ1
(
(x, y), (x′, y′)

)
:= dX(x, x

′) + dY (x
′, y′).

Proof. The is an exercise on Problem Sheet 2.

One can also show that given any finite collection of metric spaces {(Xj, dj) : j =
1, . . . , n},

ϱp
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

(
n∑

j=1

dj(xj, yj)
p

)1/p

defines a metric on
∏n

j=1Xj = X1 × · · · ×Xn.

Question. Consider R with the standard metric, that is, d(x, y) = |x−y|. Of course, R×R
is just the two dimensional plane R2. For which choice of p does the metric ϱp defined above
coincide with the standard (Euclidean) metric on R2?

3.3 Open and closed sets

We now make some rather important definitions. Let (X, d) be an arbitrary metric space.
The open ball centred at a ∈ X of radius r is the set

B(a, r) = {x ∈ X : d(x, a) < r}

and the closed ball centred at a ∈ X of radius r is the set

B(a, r) := {x ∈ X : d(x, a) ≤ r}.

Here are some examples:

15
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� The open ball of radius r centred at 0 in R is (−r, r).

The open ball of radius 1 centred at 0 in [0, 2] is [0, 1).

� If X is any set and d is the discrete metric then

B(x, r) =

{
{x} if 0 < r ≤ 1

X if r > 1.

� See Problem Sheet 1 for an example involving the sunflower metric.

Note that some care is required when thinking about open balls in relation to subspaces.
For example, B(0, 1) in R is (−1, 1), but B(0, 1) in the metric space [0, 2] is [0, 1).

Note that if d(y, x) ≤ r then

B(y, ϱ) ⊂ B(x, ϱ+ r),

since d(z, y) < ϱ implies that

d(z, x) ≤ d(z, y) + d(y, x) < ϱ+ r.

Definition 3.13. A subset S of (X, d) is bounded if there exist a ∈ X and r > 0 such that
S ⊂ B(a, r). (The definition1 remains unchanged if you insist that a ∈ S. See Problem
Sheet 2.)

The next definition is very important.

Definition 3.14. A subset U of (X, d) is open (in X) if for every x ∈ U there exists ϵ > 0
such that B(x, ϵ) ⊂ U . A subset F of (X, d) is closed (in X) if X \ F is open.

Here are some easy examples:

� in R open intervals are open and closed intervals are closed (from Analysis);

� in any metric space (X, d) both X and ∅ are both open and closed;

� in a metric space with the discrete metric every point {x} is open (take ϵ = 1/2).

Question. When is a set not open? Negate the definition to complete this sentence: U is
not open if there exists a point x ∈ U such that for every ϵ > 0 ...

We now look at some elementary properties of open sets.

Lemma 3.15. Open balls are open.

1The emptyset in any metric space is also defined to be bounded. So, more precisely, S in (X, d) is
bounded if either S = ∅ or there is a point a in S (or X) such that S ⊂ B(a, r) for some r > 0. Equivalently,
a set S is bounded if there is a real number C such that d(s, s′) ≤ C for every s, s′ ∈ S.
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Proof. Consider B(a, r) for some a ∈ X, r > 0. Take y ∈ B(a, r). Then d(y, a) < r; so
ϵ := r − d(y, a) > 0 and B(y, ϵ) ⊂ B(a, r), since if d(z, y) < ϵ we have

d(z, a) ≤ d(z, y) + d(y, a) < ϵ+ d(y, a) = r.

Finite intersections of open sets are open.

Lemma 3.16. If U1, . . . , Un are open in (X, d) then
⋂n

i=1 Ui is open in (X, d).

Proof. Take x ∈
⋂n

i=1 Ui. Then for each i = 1, . . . , n we have x ∈ Ui, so there exists ϵi > 0
such that B(x, ϵi) ⊂ Ui. If we take ϵ = min(ϵ1, . . . , ϵn) then for every i

B(x, ϵ) ⊂ B(x, ϵi) ⊂ Ui,

so B(x, ϵ) ⊂
⋂n

i=1 Ui.

In contrast, the intersection of a countable number of open sets need not be open. For
example, in R we have

∞⋂
n=1

(
− 1

n
,
1

n

)
= {0}

which is not open.

Corollary 3.17. If F1, . . . , Fn are closed in (X, d) then
⋃n

i=1 Fi is closed in (X, d).

Proof. Simply observe that

X \
n⋃

i=1

Fi =
n⋂

i=1

(X \ Fi)

and apply Lemma 3.16 to see that X \
⋃n

i=1 Fi is open.

A countable union of closed sets need not be closed. For example, in R
∞⋃
n=1

[
−1 +

1

n
, 1− 1

n

]
= (−1, 1),

which is not closed.
Unions of open sets and intersections of closed sets are better behaved. Any union of

open sets is open.

Lemma 3.18. If {Ui : i ∈ I} is any collection of sets that are open in (X, d), where I is
any index set, then U :=

⋃
i∈I Ui is open in (X, d).

Proof. If x ∈ U then x ∈ Ui for some i ∈ I. Since Ui is open, there exists ϵ > 0 such that
B(x, ϵ) ⊂ Ui, so B(x, ϵ) ⊂ U and U is open.

Similarly, any intersection of closed sets is closed.

Corollary 3.19. If {Fi : i ∈ I} is any collection of closed sets in (X, d) then
⋂

i∈I Fi is
closed in (X, d).

Proof. Observe that

X \
⋂
i∈I

Fi =
⋃
i∈I

(X \ Fi)

and apply Lemma 3.18
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3.4 Convergence of sequences

We will now define convergence in a metric space and show that it can be understood in
terms of open sets.

Definition 3.20. A sequence (xn)
∞
n=1 in (X, d) converges to x ∈ X if

lim
n→∞

d(xn, x) = 0.

In terms of open balls, this can be phrased as for every ϵ > 0 there exists N ≥ 1 such that

xn ∈ B(x, ϵ) for all n ≥ N.

Lemma 3.21. A sequence in a metric space can have at most one limit.

Proof. Suppose that, for a sequence (xk)
∞
k=1,

lim
k→∞

d(xk, x) = lim
k→∞

d(xk, y) = 0.

Then
0 ≤ d(x, y) ≤ d(x, xk) + d(xk, y) → 0,

and so d(x, y) = 0, i.e. x = y.

The above result may seem obvious but later we will see more general types of spaces
where sequences can converge to more than one limit.

We now show that we can characterise convergence purely in terms of open sets, without
involving the metric directly.

Lemma 3.22. Let (xn)
∞
n=1 be a sequence in a metric space X. We have xn → x, as n → ∞,

if and only for every open set U containing x there is an N ≥ 1 such that xn ∈ U for all
n ≥ N .

Proof. If xk → x and U ∋ x is open then B(x, ϵ) ⊂ U for some ϵ > 0. There exists N ≥ 1
such that d(xn, x) < ϵ for all n ≥ N , i.e. such that xn ∈ B(x, ϵ) ⊂ U for all n ≥ N .

Conversely, suppose that for every open set U containing x there is an N ≥ 1 such that
xn ∈ U for all n ≥ N . Then, given ϵ > 0, the set B(x, ϵ) is an open set containing x, so
there exists N ≥ 1 such that xn ∈ B(x, ϵ), for all n ≥ N , i.e. such that d(xn, x) < ϵ, for all
n ≥ N . So we have shown xn → x.

Lemma 3.23. A subset F of a metric space is closed if and only if whenever a sequence
(xn)

∞
n=1 contained in F converges to some x ∈ X, it follows that x ∈ F .

Proof. Suppose that F is closed and that (xn) is a sequence in F with xn → x. Assume, for
a contradiction, that x /∈ F . Since X \ F is open, by Lemma 3.22 there exists N ≥ 1 such
that xn ∈ X \ F for all n ≥ N ; but this contradicts the fact that xn ∈ F , and so we must
have x ∈ F .

For the other direction, we prove the contrapostive. Suppose that F is not closed, i.e.
X \ F is not open. Then there exists some x ∈ X \ F with the property that there is no
ϵ > 0 such that B(x, ϵ) ⊂ X \ F . Then for each k ∈ N there exists xk ∈ B(x, 1/k) such that
xk /∈ X \ F , i.e. such that xk ∈ F . Then xk → x but x /∈ F .

Exercise: Show that a closed ball {x ∈ X : d(a, x) ≤ r} is a closed set.
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4 Continuity

4.1 Continuity in metric spaces

We begin by defining what it meant by the limit of a function between two metric spaces
as the argument tends to a point. (N.B. We use the terms “function” and “map” inter-
changably.)

Definition 4.1. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a function.
For p ∈ X, we say that limx→p f(x) = y ∈ Y if for every ϵ > 0 there exists δ > 0 such that

0 < dX(x, p) < δ ⇒ dY (f(x), y) < ϵ.

Next, we define what it means for a function between two metric spaces to be continuous.

Definition 4.2. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a function.
Then f is

� continuous at p ∈ X if limx→p f(x) = f(p), i.e. if for every ϵ > 0 there exists a δ > 0
such that

dX(x, p) < δ ⇒ dY (f(x), f(p)) < ϵ;

� continuous (on X) if it is continuous at every point of X.

Not

examinable
There is a stronger notion called Lipschitz continuity.

Definition 4.3. A function f : X → Y is Lipschitz continuous or just Lipschitz if there
exists C ≥ 0 such that

dY (f(x), f(y)) ≤ CdX(x, y) for ever x, y ∈ X.

We say that C is a Lipschitz constant (for f). It is easy to see that a Lipschitz continuous
function is continuous (by taking δ = ϵ/C).

The following is a useful example of a Lipschitz function. Suppose A ⊂ X is non-empty.
Then we can define the distance of x from A by setting

d(x,A) = inf
z∈A

d(x, z).

Lemma 4.4. Let (X, d) be a metric space. If A ⊂ X is non-empty then the function
x 7→ d(x,A) is Lipschitz with Lipschitz constant 1.

Proof. Take x, y ∈ X. Then for every z ∈ A we have

d(x,A) ≤ d(x, z) ≤ d(x, y) + d(y, z).

Taking the infimum over the right-hand side we obtain

d(x,A) ≤ d(x, y) + d(y, A)
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or
d(x,A)− d(y, A) ≤ d(x, y).

We could run the same argument starting with d(y, A) ≤ d(y, x) + d(x, z), and so

|d(x,A)− d(y, A)| ≤ d(x, y),

as required.

Some basic properties of continuity that you have seen in Analysis continue to hold.

Lemma 4.5. Let (X, dX) and (Y, dY ) be metric spaces. Let (xn)
∞
n=1 be a sequence in X

such that xn → x ∈ X in (X, dX), as n → ∞. If f : X → Y is continuous at x then
f(xn) → f(x), as n → ∞ in (Y, dY ).

Proof. Exercise.

Lemma 4.6. Let (X, d) be a metric space.

1. If f, g : X → R are continuous then f+g and fg are continuous and f/g is continuous
at all points x where g(x) ̸= 0.

2. If (Y, ∥ · ∥) is a normed vector space and f, g : X → Y are continuous then f + g is
continuous.

Proof. Exercise. (Note that we need Y to be a vector space in (2) so that f + g is defined.
If Y is only a metric space then f + g need not be defined.)

�

Note that we didn’t specify a metric on Y . When Y is a normed space, you are expected to
understand that the metric d(y, y′) = ∥y− y′∥ determined by the norm is being used (unless
stated otherwise).

There is a close relationship between continuity and open sets but, before we explore
this, we give some examples to show that the image of an open set under a continuous map
need not be open.

� Consider f : R → R given by f(x) = sinx. Then f(−10, 10) = [−1, 1]. Here, the
image of an open set is closed.

� Consider f : R → R given by f(x) = 1/(1 + x2). Then f(R) = (0, 1]. Here, the image
of an open set is neither open nor closed.

However, the preimage of any open set is open if f is continuous. If f : X → Y and
A ⊂ Y we write

f−1(A) = {x ∈ X : f(x) ∈ A}

and call this the preimage of A (under f). The preimage of a set is defined even if f is
not invertible. For example, take f : R → R given by f(x) = x2. Then f−1(4, 9) =
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(−3,−2) ∪ (2, 3). Furthermore, we can take the preimage of a set A even when A contains
points that are not in f(X): for the function f(x) = 1/(1 + x2) considered above we have

f−1((2, 3)) = ∅

which is open; and
f−1((1/2, 2)) = f−1((1/2, 1]) = (−1, 1)

which is open once again.
If f is invertible then f−1 : f(X) → X is defined and

f−1(A) = {f−1(x) : x ∈ A ∩ f(X)}.

We now characterise continuity in terms of open sets.

Theorem 4.7. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is contin-
uous if and only if for any open set U ⊂ Y , f−1(U) is open in X.

Proof. Suppose that f is continuous. Take any open set U ⊂ Y , and some point x ∈
f−1(U). Then f(x) ∈ U , which is open, so there exists ϵ > 0 such that BY (f(x), ϵ) ∈ U ,
i.e. dY (f(x), y) < ϵ implies that y ∈ U . Since f is continuous, there exists δ > 0 such
that dX(x

′, x) < δ implies that dY (f(x
′), f(x)) < ϵ. So if x′ ∈ BX(x, δ) we have f(x′) ∈

BY (f(x), ϵ) ⊂ U , i.e. BX(x, δ) ∈ f−1(U). Hence f−1(U) is open.
Now, for the converse, suppose that U ⊂ Y open implies f−1(U) open. Take x ∈ X

and ϵ > 0. Then BY (f(x), ϵ) is open in Y , so f−1(BY (f(x), ϵ)) is open in X. Since this set
contains x, we have BX(x, δ) ⊂ f−1(BY (f(x)), ϵ)) for some δ > 0: but this inclusion says
precisely that

dX(x
′, x) < δ ⇒ dY (f(x), f(x

′)) < ϵ,

so that f is continuous at x. Since x ∈ X is arbitrary, f is continuous.

Now note that if f : X → Y then for any A ⊂ Y we have

f−1(Y \ A) = X \ f−1(A).

(Check: If x ∈ X such that f(x) ∈ Y \ A, then x /∈ f−1(A), i.e. LHS ⊂ RHS. If x /∈ f−1(A)
then f(x) /∈ A, i.e. f(x) ∈ Y \ A or x ∈ f−1(Y \ A), so RHS ⊂ LHS.)

Using this we have the following corollary, defining continuity in terms of preimages of
closed sets.

Corollary 4.8. Theorem 4.7 holds with “open” replaced by “closed”. In other words, a
function f : X → Y is continuous if and only if for any closed set F ⊂ Y , f−1(F ) is closed
in X.

Proof. This is an exercise on Problem Sheet 2.

Another nice property is that continuity is closed under composition.

Lemma 4.9. Suppose that (X, dX), (Y, dY ) and (Z, dZ) are metric spaces and f : X → Y
and g : Y → Z are continuous functions. Then g ◦ f : X → Z is continuous.
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This result gives us a great illustration of how useful Theorem 4.7 is. First we will
give a proof using the ϵ–δ definition of continuity; then we shall give a proof using the
characterisation of continuity in terms of open sets. Observe how much easier the second
proof is!

Not

examinableFirst proof. Take a ∈ X and ϵ > 0. Since g is continuous at f(a) there exists δ1 > 0 such
that

dY (y, f(a)) < δ1 ⇒ dZ(g(y), g ◦ f(a)) < ϵ.

Since f is continuous at a, there exists δ2 > 0 such that

dX(x, a) < δ2 ⇒ dY (f(x), f(a)) < δ1

so
dX(x, a) < δ2 ⇒ dZ(g ◦ f(x), g ◦ f(a)) < ϵ.

Second proof. If U is an open subset of Z then g−1(U) is open in Y . So f−1(g−1(U)) =
(g ◦ f)−1(U) is open in X.

4.2 Topologically equivalent metrics

Suppose we have two metrics d1 and d2 on the same set X. We have a definition of continuity
that depends only on open sets, so if the open sets in (X, d1) are the same as the open sets
in (X, d2), any function f : X → Y that is continuous using the d1 metric on X should be
continuous using the d2 metric on X.

To prove this more formally, we can use Lemma 4.9 and the following observation: if d1
and d2 are two metrics on X, then the identity map 1X : X → X defined by 1X(x) = x is
continuous from (X, d1) into (X, d2) if and only if every set that is open in (X, d2) is open
in (X, d1).

Lemma 4.10. Suppose that d1 and d2 are two metrics on X. Then the following statements
are equivalent:

(i) every set that is open in (X, d2) is open in (X, d1);

(ii) for any metric space (Y, dY ), if g : X → Y is continuous from (X, d2) into (Y, dY ) then
g is continuous from (X, d1) into (Y, dY ); and

(iii) for any metric space (Y, dY ), if f : Y → X is continuous from (Y, dY ) into (X, d1) then
f is continuous from (Y, dY ) into (X, d2).

Proof. We show that (i) ⇒ (ii) and that (ii) ⇒ (i). The proof of (i) ⇔ (iii) is similar.

(i) ⇒ (ii): It follows from (i) that the identity map 1X : (X, d1) → (X, d2) is continuous. If
g : (X, d2) → Y is continuous then, by Lemma 4.9, g ◦ 1X : (X, d1) → Y is continuous, and
g(1X(x)) = g(x).

(ii) ⇒ (i): Take (Y, dY ) = (X, d2) and g = 1X : (X, d2) → (X, d1), i.e. g(x) = x. Since g
is continuous from (X, d2) into (X, d2) it is continuous from (X, d1) into (X, d2). Thus, for
every open set U in (X, d2), g

−1(U) = U is open in (X, d1).
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4.2 Topologically equivalent metrics 4 CONTINUITY

As a consequence we have the following theorem (replacing logical⇒s in the above lemma
by ⇔s).

Theorem 4.11. Suppose that d1 and d2 are two metrics on X. Then the following statements
are equivalent:

(i) the open sets in (X, d1) and (X, d2) coincide;

(ii) for any metric space (Y, dY ), a function g : X → Y is continuous from (X, d1) into
(Y, dY ) if and only if g is continuous from (X, d2) into (Y, dY );

(iii) for any metric space (Y, dY ), a function f : Y → X is continuous from (Y, dY ) into
(X, d1) if and only if f is continuous from (Y, dY ) into (X, d2).

Definition 4.12. (i) Two metrics d1 and d2 on X are called topologically equivalent, or just
equivalent, if the open sets in (X, d1) and (X, d2) coincide.

(ii) Two metrics d1 and d2 on X are called Lipschitz equivalent if there exist 0 < c ≤ C < ∞
such that

cd1(x, y) ≤ d2(x, y) ≤ Cd1(x, y) for all x, y ∈ X.

Lemma 4.13. Let d1 and d2 be two metrics on X that are Lipschitz equivalent on X. Then
d1 and d2 are topologically equivalent.

Proof. Exercise.

Recall that two norms ∥ · ∥1 and ∥ · ∥2 on a vector space X are said to be equivalent if
there exist 0 < c ≤ C < ∞ such that

c∥x∥1 ≤ ∥x∥2 ≤ C∥x∥1.

Each norm induces a metric di(x, y) = ∥x− y∥i on X. The following corollary is immediate
from Lemma 4.13.

Corollary 4.14. The metrics induced by equivalent norms are topologically equivalent.

Example: The metrics induced by the ℓp norms on Rn, 1 ≤ p ≤ ∞, are topologically
equivalent to each other (since the norms are equivalent).

Example: The metrics d(x, y) and d1(x, y) := min(d(x, y), 1) are topologically equivalent
(they have the same open sets). (See Problem Sheet 2.)

As shown by the previous example, it is not true that topologically equivalent metrics
are necessarily Lipschitz equivalent. However, for normed spaces we have the following.

Lemma 4.15. If X is a vector space and two norms ∥·∥1 and ∥·∥2 on X induce topologically
equivalent metrics then the norms are equivalent.
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Not

examinableProof. Since the metrics are topologically equivalent the identity map 1X : (X, d1) → (X, d2)
is continuous; this is the same as considering the identity map between the two normed spaces
(X, ∥ · ∥1) and (X, ∥ · ∥2). In particular, the identity map is continuous at 0, so there exists
δ > 0 such that

∥x∥1 < δ ⇒ ∥x∥2 < 1.

For y ∈ X, take x = δy/2∥y∥1, so that ∥x∥1 = δ/2 < δ. It follows that∥∥∥∥ δy

2∥y∥1

∥∥∥∥
2

< 1, i.e. ∥y∥2 <
2

δ
∥y∥1.

Likewise, we can use the fact that the identity map is continuous from (X, ∥·∥2) into (X, ∥·∥1)
to show that ∥y∥1 ≤ (2/δ′)∥y∥2.

Example: The norms ∥ · ∥L1 and ∥ · ∥L2 on C[0, 1] are not topologically equivalent. (See
Problem Sheet 2).

4.3 Isometries and homeomorphisms

Definition 4.16. Suppose that f : X → Y is a bijection such that

dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X.

Then f is called an isometry between X and Y . It preserves the distance between points,
so X and Y are “the same” as metric spaces. We say that X and Y are isometric.

Definition 4.17. If f : X → Y is a bijection and both f and f−1 are continuous we say
that f is a homeomorphism and that X and Y are homeomorphic.

If f is a homeomorphism then U is open in X if and only if f(U) is open in Y . (Check:
U open in Y implies that f−1(U) is open in X since f is continuous; V open in X implies
that f(V ) is open in Y , since f−1 is continuous.)

Examples:

� X is homeomorphic to X (take h = 1X).

� Any two open intervals (a, b) and (α, β) are homeomorphic; take

h(x) = α + (β − α)
(x− a)

(b− a)
.

� (−1, 1) is homeomorphic to R; take

h(x) = tan(πx/2) or h(x) = x/(1− |x|).

� Any open interval (a, b) is homeomorphic to R; combine the two previous examples.
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� The square is homeomorphic to the circle (construct a homeomorphism by “moving
along rays”).

Since the identity map 1X : (X, d1) → (X, d2) is always bijective two metrics on X are
equivalent if and only if the identity map 1X : (X, d1) 7→ (X, d2) is a homeomorphism.

4.4 Topological properties I

If some property P of a metric space is such that if (X, d) has property P then so does
every metric space that is homeomorphic to (X, d) we say that P is a topological property.
More colloquially, these are properties that are only concerned with set-theoretic notions
(e.g. countability) and/or open sets, rather than distances.

Examples of topological properties:

� X is open in X; X is closed in X;

� X is finite; countably infinite; or uncountable;

� X has a point such that {x} is open in X (an ‘isolated point’);

� X has no isolated points;

� every subset of X is open;

� every continuous real-valued function on X is bounded.

Examples of properties that are not “topological”:

� X is bounded;

� X is “totally bounded”: for each r > 0 there exists a finite set F such that every ball
of radius r contains a point of F .
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5 TOPOLOGICAL SPACES

5 Topological Spaces

5.1 Definition of a topology

We have seen that, in a metric space, convergence and continuity may be characterised
purely in terms of the open sets. This prompts us to make the following definition, where
we dispense with the need to have metric and only require that we have “open sets”.

Definition 5.1. A topology T on a set T is a collection of subsets of T , which we agree to
call the “open sets”, such that

(T1) T and ∅ are open;

(T2) the intersection of finitely many open sets is open; and

(T3) arbitrary unions of open sets are open.

The pair (T, T ) is called a topological space.

Examples:

� The topology induced by a metric: in any metric space (X, d) the collection of all open
sets forms a topology [using Lemmas 3.16 and 3.18].

� The discrete topology: all subsets are open (check: this is induced by the discrete
metric).

� The indiscrete topology: the only open sets are T and ∅.

� The co-finite topology: a set is open if it is T , ∅, or its complement is finite.

� The co-countable topology: a set is open if it is T , ∅, or its complement is countable.

� The Zariski topology on Rn: a set is open if it is Rn, ∅, or its complement is the set of
zeros of a polynomial with real coefficients.

Note that topologies need not come from metrics, i.e. there does not have to be a metric
on T that gives rise to the same open sets. If there is, we say that (T, T ) is metrisable (we
will return to this later). For now, we show that the indiscrete topology is not metrisable if
T consists of more than one point.

Lemma 5.2. Suppose that T consists of more than one point. Then the indiscrete topology
on T is not metrisable.

Proof. Suppose the indiscrete topology on T is induced by a metric d on T . Let x, y ∈ T
with x ̸= y. Then d(x, y) = ϵ > 0. The set B(x, ϵ/2) is an open subset of (T, d). Since
x ∈ B(x, ϵ/2) this set is not empty, and since y /∈ B(x, ϵ/2) this set is not all of T . But ∅
and T are the only open sets, so we have a contradiction.

Sometimes (but not always) it is possible to compare two topologies on the same space.
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5.2 Bases and sub-bases 5 TOPOLOGICAL SPACES

Definition 5.3. If T1 and T2 are two topologies on T then we say that T1 is coarser than T2

if T1 ⊂ T2, i.e. T1 contains “fewer” open sets than T2. In this situation, we also say that T2

is finer than T1. [Coarser = smaller; finer = larger.] One can have two topologies on T that
are not comparable (so they are not the same, but neither is finer than the other).

Sometimes we will say that a topology T is the smallest (or coarsest) topology with a
given property. By this, we mean that if T ′ is another topology with this property then
T ⊂ T ′.

Closed sets in a topological space are simply defined to be the complements of open sets.

Definition 5.4. A subset of a topological space T is closed if its complement is open.

Using De Morgan’s laws, the collection F of all closed sets satisfies

(F1) T and ∅ are closed;

(F2) the union of finitely many closed sets is closed; and

(F3) arbitrary intersections of closed sets are closed.

Given any collection F that satisfies these properties, we could take the collection of their
complements as the open sets in some topology T .

The co-finite topology (above) is more naturally specified in terms of its closed sets: T ,
∅, and finite subsets. Properties (F1–3) are easily checked. Similarly for the co-countable
topology and the Zariski topology.

5.2 Bases and sub-bases

In a metric space we do not have to specify all the open sets: we build them up from open
balls (as seen on Problem Sheet 1). We can do something similar in a topological space.

Definition 5.5. A basis for a topology T on T is a collection B ⊂ T such that every set
in T is the union of some sets from B, i.e. for all U ∈ T , there exists CU ⊂ B such that
U =

⋃
B∈CU B.

Note that a collection of sets cannot be basis for two distinct topologies. (Suppose that
B is a basis for both T and T ′. Then every set in T ′ is a union of sets in B. Since B ⊂ T ,
this implies that T ′ ⊂ T . Similarly, T ⊂ T ′.)

Example: Let us check that in a metric space open balls form a basis for the topology induced
by the metric. A set U is open in a metric space (X, d) if and only if for every x ∈ U there
exists ϵx > 0 such that B(x, ϵx) ⊂ U . So

U =
⋃
x∈U

B(x, ϵx).

Thus, in a metric space, the collection of all open balls forms a basis for the topology induced
by the metric.

The following lemma is an immediate consequence of the definition of a basis, since
T ∈ T , and if B1, B2 ∈ B then B1, B2 ∈ T so B1 ∩B2 ∈ T .

27



5.2 Bases and sub-bases 5 TOPOLOGICAL SPACES

Lemma 5.6. If B is any basis for T then

(B1) T is the union of some sets from B (i.e. there exists CT ⊂ B such that
⋃

B∈CT B = T );

(B2) if B1, B2 ∈ B then B1∩B2 is the union of some sets from B (i.e. there exists CB1∩B2 ⊂ B
such that

⋃
B∈CB1∩B2

B = B1 ∩B2).

However, this can be reversed.

Proposition 5.7. Let T be a set and let B be a collection of subsets of T that satisfy (B1)
and (B2). Then there is a unique topology T on T whose basis is B; its open sets are precisely
the unions of sets from B.

Note that T is the smallest topology that contains B.

Proof. If there is such a topology, then by the definition of a basis its sets consist of the
unions of sets from B. So we only need check that if T consists of unions of sets from B then
this is indeed a topology on T . We check properties (T1–3).

(T1): T is the union of sets from B by (B1).

(T2): If U, V ∈ T then U =
⋃

i∈I Bi and V =
⋃

j∈J Dj, with Bi, Dj ∈ B. Then

U ∩ V =
⋃

(i,j)∈I×J

Bi ∩Dj,

which is a union of sets in B by (B2), and hence an element of T .

(T3): Any union of unions of sets from B is a union of sets from B.

The following definition is also useful.

Definition 5.8. A sub-basis for a topology T on T is a collection B ⊂ T such that every
set in T is a union of finite intersections of sets from B.

This is a bit more complicated to write explicitly than the definition of basis. It says
that every U ∈ T can be written as a union U =

⋃
i∈I Di, where each Di has the form

Di = B
(i)
1 ∩ · · · ∩B

(i)
n(i), for some B

(i)
1 , . . . , B

(i)
n(i) ∈ B.

(Note that if B is a basis for T , then it is also a sub-basis for T ; but in general a sub-basis
will be “smaller”, i.e, have fewer sets.)

Example: The collection of intervals (a,∞) and (−∞, b) (ranging over all a, b ∈ R) is a
sub-basis for the usual topology on R, since intersections give the open intervals (a, b) and
these are a basis for the usual topology.

Proposition 5.9. If B is any collection of subsets of a set T whose union is T then there is
a unique topology T on T with sub-basis B. This T is precisely the collection of all unions
of finite intersections of sets from B.
Proof. If B is a sub-basis for a topology T , then this topology has D, the collection of all
finite intersections of elements of B, as a basis. But D satisfies (B1) and (B2) from Lemma
5.6, so by Proposition 5.7 there is a unique topology T with basis D, which is also the unique
topology with sub-basis B.

Note that the topology T from this proposition is the smallest (‘coarsest’) topology on
T that contains B.
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5.3 Subspaces and finite product spaces

Definition 5.10. If (T, T ) is a topological space and S ⊂ T , then the subspace topology on
S is

TS = {U ∩ S : U ∈ T }.

We call (S, TS) a (topological) subspace of T .

Example: If we consider [0, 1] as a subspace of R then the open sets in [0, 1] consist of all
sets U ∩ [0, 1] where U is an open subset of R. In particular, [0, a) is open for every a ∈ (0, 1)
(that is, open in [0, 1] with the subspace topology).

We have already seen something similar when we restricted metrics to subspaces. The
following lemma shows that this definition is consistent with our definition in metric spaces.

Lemma 5.11. Suppose that (X, d) is a metric space with corresponding topology T . If
S ⊂ X then the subspace topology TS on S corresponds to the topology on S that arises from
the metric space (S, d|S).

Recall that dS is the restriction of d to S, i.e. d|S(x, y) = d(x, y) for all x, y ∈ S. For
simplicity we now write dS for d|S.

The key to the proof is that if a ∈ S we have

BX(a, ϵ) ∩ S = {x ∈ X : d(x, a) < ϵ and x ∈ S}
= {x ∈ S : d(x, a) < ϵ}
= {x ∈ S : dS(x, a) < ϵ}
= BS(a, ϵ).

Not

examinableProof. Suppose that a ∈ V ∈ TS. Then V = U ∩ S for some U ∈ T . Since U is open in
(X, d), there exists ϵ > 0 such that BX(a, ϵ) ⊂ U ; so

BX(a, ϵ) ∩ S ⊂ U ∩ S.

But BX(a, ϵ) ∩ S = BS(a, ϵ), so

BS(a, ϵ) ⊂ U ∩ S = V.

Hence, V is open in (S, d|S).
Conversely, suppose that V is open in (S, dS). Then for any a ∈ V we can find ϵ(a) > 0

such that
BS(a, ϵ(a)) = BX(a, ϵ(a)) ∩ S ⊂ V.

Now take the union over a ∈ V to obtain

V =
⋃
a∈V

BS(a, ϵ(a)) =

[⋃
a∈V

BX(a, ϵ(a))

]
∩ S ∈ TS,
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since the union in square brackets is an element of T .

Definition 5.12. Suppose that (T1, T1) and (T2, T2) are two topological spaces. Then the
product topology on T1 × T2 is the topology T with basis

B = {U1 × U2 : U1 ∈ T1, U2 ∈ T2}.

We call (T1 × T2, T ) the (topological) product of T1 and T2.

(Note that the collection B can be a basis, since it satisfies (B1) and (B2) from Lemma 5.6.
(B1) T1 × T2 is a union of sets in B (in fact T1 × T2 is an element of B); and (B2) if we take
V,W ∈ B with

V = V1 × V2 W = W1 ×W2

then we have
V ∩W = (V1 ∩W1)× (V2 ∩W2) ∈ B,

as required.)

Definition 5.12 extends to any finite number of factors.
Note that since B is a basis, T will in general contain far more sets than just those from

B.
The product topology is consistent with the definition of metrics on a product space we

defined earlier.

Lemma 5.13. If (X1, d1) and (X2, d2) are two metric spaces and T1 and T2 the corresponding
topologies on X1 and X2, then for any choice of p with 1 ≤ p ≤ ∞ the topology induced by
the metric ϱp on X1 ×X2 defined in Lemma 3.12 coincides with the product topology T on
X1 ×X2 as defined in Definition 5.12.

Not

examinableProof. For simplicity of notation we prove the result for the case

ϱ((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2),

i.e. we take p = 1. But the argument for other values of p is almost identical. (All the ϱp
metrics are topologically equivalent.)

Suppose that V ∈ T ; we want to show that V is open when we use the ϱ-metric on
X1 ×X2. Since V ∈ T we have

V =
⋃
i

U i
1 × U i

2,

with U i
1 ∈ T1 and U i

2 ∈ T2. So given any (x1, x2) ∈ V such that (x1, x2) ∈ U i
1×U i

2 for some i,
there exists ϵ1 such that Bd1(x1, ϵ1) ⊂ U i

1 and ϵ2 such that Bd2(x2, ϵ2) ⊂ U i
2. It follows that

Bϱ((x1, x2),min(ϵ1, ϵ2)) ⊂ U i
1 × U i

2 ⊂ V,

so V is open in the ϱ-metric.
Now we show that if U ∈ X1 ×X2 is open in the ϱ-metric then it is an element of T , by
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showing that U can be written as

U =
⋃

(x1,x2)∈U

Bd1(x1, ϵ(x1, x2))×Bd2(x2, ϵ(x1, x2)) (7)

for some ϵ(x1, x2) > 0. This is sufficient, as all dj-open balls are contained in Tj, j = 1, 2.
Given any (x1, x2) ∈ U , there exists ϵ > 0 such that Bϱ((x1, x2), ϵ) ⊂ U . By the definition
of ϱ, we have

Bd1(x1, ϵ/2)×Bd2(x2, ϵ/2) ⊂ Bϱ((x1, x2), ϵ) ⊂ U ;

taking the union over all (x1, x2) ∈ U now yields equation (7).

This allows us to give an example of the fact that elements of the product topology are
not all of the form U1 ×U2 for Ui ∈ Ti. Consider B(0, 1) in R2, which is open in the product
topology (it is open for the usual metric on R2, which is the ‘product metric’ ϱp with p = 2).
Suppose that B(0, 1) = U1×U2. Then (3/4, 0) ∈ B(0, 1), so 3/4 ∈ U1, and (0, 3/4) ∈ B(0, 1),
so 3/4 ∈ U2: but then U1 × U2 ∋ (3/4, 3/4) /∈ B(0, 1).

5.4 Closure, interior and boundary

Let (T, T ) to be a topological space.

Definition 5.14. A neighbourhood of x ∈ T is a set H ⊂ T such that x ∈ U ⊂ H for some
U ∈ T . An open neighbourhood of x ∈ T is an open set U (i.e. a set U ∈ T ) that contains x.

Some authors use “neighbourhood” for “open neighbourhood”.

Definition 5.15. The closure A of a set A ⊂ T is the intersection of all closed sets that
contain A.

Note that if A is non-empty then A is non-empty. Furthermore, A is always closed, since
it is the intersection of closed sets. The closure of A is therefore the smallest closed set that
contains A. (By “smallest”, we mean that if F is a closed set that contains A then A ⊂ F .)

It follows that A is closed if and only if A = A; so we have A = A, since A is always closed.

Example: In R, we have (a, b) = [a, b]. We will soon be able to show easily that Q = R (see
lemma below).

It follows almost immediately from the definition that

H ⊂ K ⇒ H ⊂ K

and
H ∪K = H ∪K.

(See Problem Sheet 3.)
We can give the following alternative characterisations of closure.
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Lemma 5.16. The closure of A, A, is the set

A : = {x ∈ T : U ∩ A ̸= ∅ for every open set U that contains x}
= {x ∈ T : every (open) neighbourhood of x intersects A}.

(We say that “A intersects B” if A ∩B ̸= ∅.)

Proof. Let x ∈ A. Suppose there is an open set U such that x ∈ U and U ∩ A = ∅, then
T \ U ⊃ A. Since T \ U is closed, we have A ⊂ T \ U . However, this gives a contradiction,
since x ∈ A ∩ U and so A ∩ U ̸= ∅. Therefore

A ⊂ {x ∈ T : U ∩ A ̸= ∅ for every open set U that contains x}.

Now suppose x ∈ T is such that U ∩ A ̸= ∅ for every open set that contains x, but
x /∈ A. Then x /∈ F for some closed set that contains A. So we have an open set T \F which
contains x and satisfies (T \ F ) ∩ A = ∅, a contradiction. Therefore,

{x ∈ T : U ∩ A ̸= ∅ for every open set U that contains x} ⊂ A.

It follows easily from this lemma that in R we have Q = R \Q = R. This shows that in
general

H ∩K ̸= H ∩K,

e.g. take H = Q and K = R \Q; then H = K = R, but H ∩K = ∅.

In a metric space we have a simple characterisation of the closure.

Lemma 5.17. If X is a metric space and A ⊂ X then

A = {limits of convergent sequences in A}.

Proof. If (an)
∞
n=1 is a sequence in A then it is also a sequence in A. If the sequence converges

to a ∈ X then, since A is closed and applying Lemma 3.23, we have a ∈ A. On the other
hand, if a ∈ A then, for every n ≥ 1, we have B(a, 1/n) ∩ A ̸= ∅, so there exists xn ∈ A
with d(xn, a) < 1/n. Clearly xn → a, as n → ∞.

Definition 5.18. The interior of A, A◦, is the union of all open subsets of A.

Since A◦ is the union of open sets it is open, and contained in A. It is the largest open
subset of A. (“Largest” means that if U ⊂ A is open then U ⊂ A◦.) So A is open if and
only if A = A◦. It follows that (A◦)◦ = A◦, since A◦ is open.

Again, it is more or less immediate from the definition that

H ⊂ K ⇒ H◦ ⊂ K◦

and that
(H ∩K)◦ = H◦ ∩K◦.

(See Problem Sheet 3.)
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Lemma 5.19. The interior of A, A◦ consists of all points for which A is a neighbourhood,
i.e.

{x ∈ T : x ∈ U ⊂ A for some U ∈ T }.

Proof. If x ∈ A◦ then x ∈ U for some open set U ⊂ A, i.e. A is a neighbourhood of x.
Conversely, if A is a neighbourhood of x then there is an open set U such that x ∈ U ⊂ A,
and so x ∈ A◦.

We note in general
(H ∪K)◦ ̸= H◦ ∪K◦ :

we can use the same two sets as last time, H = Q and K = R \Q. Then H◦ = K◦ = ∅, but
(H ∪K)◦ = R◦ = R.

We can relate closures and interiors as follows.

Lemma 5.20. If A ⊂ T then

A◦ = T \ (T \ A) and A = T \ (T \ A)◦.

Proof. If x ∈ A◦ then A is a neighbourhood of x that does not intersect T \A, so x /∈ T \ A,
so x ∈ T \ (T \ A). If x ∈ T \ (T \ A) then x /∈ (T \ A), so there is an open set containing x
that does not meet T \ A. So this open set (which contains x) is a subset of A, so x ∈ A◦.
Hence A◦ = T \ (T \ A). The other part is left as an exercise on Problem Sheet 3.

The next concept we want to introduce in this part is that of the boundary of a set.

Definition 5.21. The boundary ∂H of a set H is the set of all points x with the property
that every neighbourhood of x meets both H and its complement:

∂H = {x ∈ T : if U is an open set that contains x then

U ∩H ̸= ∅ and U ∩ (T \H) ̸= ∅}.

It is immediate from the definition that

∂H = H ∩ T \H,

so ∂H is always closed.

Using Lemma 5.20 we have T \H = T \H◦, so we also have

∂H = H ∩ (T \H◦) = H \H◦.

Examples: In R we have ∂(a, b) = ∂[a, b] = {a, b}; ∂Q = R.
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Not

examinableDefinition 5.22. Let S ⊂ T . A point x ∈ T is a limit point of S if every neighbourhood of
x intersects S \ {x}. (Note that a limit point of S does not need to belong to S.) A point
in S that is not a limit point of S is called an isolated point.
(If (X, d) is a metric space and S ⊂ X then x ∈ X is an limit point of S if, given ϵ > 0,
there exists y ∈ S with y ̸= x such that d(x, y) < ϵ. Equivalently, if for every ϵ > 0,
(B(x, ϵ) \ x) ∩ S ̸= ∅.)

Examples:

� If S = (0, 1) ⊂ R then any point in the interval [0, 1] is a limit point of S.

� If S = [0, 1] ∪ {2} then {2} is not a limit point of S, so is an isolated point of S.

Note that if S is closed then it contains all its limit points, for otherwise we would have
a limit point x ∈ T \ S, which would be an open set containing x that does not intersect
S = S \ {x}.

We have S = S ∪ {all limit points of S}, see Problem Sheet 3.

Definition 5.23. A subset A of T is

� dense in T if A = T ;

� nowhere dense in T if (A)◦ = ∅;

Not

examinable

� meagre in T (or “of the first category in T”) if it is a union of a countable number of
nowhere dense sets.

Examples: Q is dense in R (as is R \ Q). In R, one-point sets are nowhere dense; so Q is
meagre in R. However, R \Q = ∅, so Q isn’t nowhere dense.

Note: equivalently, a subset A of T is nowhere dense if T \ A is dense in T , since (using
Lemma 5.20) we have

(A)◦ = T \ (T \ A).

(If A is closed this is just T \ A is dense.)

5.5 The Cantor set

We will now discuss the construction of an interesting subset of R which illustrates some
of the properties above (in fact, it is a simple example of what is called a fractal). It will
reappear later in the course.

The (“middle third”) Cantor set is constructed as follows:

Step 0: Set C0 = [0, 1].
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Step 1: Remove the middle third (as an open interval) of this set, leaving

C1 = [0, 1/3] ∪ [2/3, 1].

Step N : From each of 2N−1 closed intervals from CN−1 remove the open middle third to give

a new set that consists of 2N closed intervals.
Note that CN consists of 2N closed intervals, each of length 3−N (so their total length is

(2/3)N → 0, as N → ∞).

The set

C =
∞⋂
n=0

Cn

is the (middle third) Cantor set. Since each Cn is closed, C is closed (as it is the intersection
of closed sets). C is non-empty: it contains the endpoints of every interval that we remove
(in fact it contains uncountably many points, which we will prove later).

The interior of C is empty: if not it would contain some open set of length ℓ > 0; but
the total length of the intervals in Cn is (2/3)n which is < ℓ for n large enough. So since C
is closed, it is nowhere dense.

We have C = ∂C, since C = C and C◦ = ∅; it also follows from this that C is nowhere
dense.

The set C contains no isolated points: for any ϵ > 0 any point in C was in an interval of
length < ϵ/2, and the two endpoints of this interval are both in C.

5.6 The Hausdorff property and metrisability

If we think of a metric space as a topological space, we use the topology that comes from
the metric (unless we specify otherwise).

Definition 5.24. A topological space (T, T ) is metrisable if there is a metric d on T such
that T consists of the open sets in (T, d).

Not all topological spaces are metrisable: we have already seen this for the indiscrete
topology. But there are other (more natural) topologies that cannot be derived from a
metric.

One way to show that a topology is not metrisable: find a property that any metrisable
topological space must have, and show that it fails. The Hausdorff property is one such.
However, before we introduce it, we need to give a definition of convergence of sequences in
topological spaces.

Definition 5.25. A sequence (xn)
∞
n=1 in a topological space T converges to x if for every

open neighbourhood U of x there exists N ≥ 1 such that xn ∈ U for all n ≥ N .

You should convince yourselves that if (X, d) is a metric space then convergence (in the
sense of this definition) in the topology induced by the metric is just the same as convergence
in (X, d) (as in Definition 3.20).
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However, this definition sometimes gives rise to unexpected behaviour. For example,
suppose that T is any set with the indiscrete topology. Then any sequence (xn) in T converges
to any point x in T : the only open set containing x is T itself, and xn ∈ T for all n ≥ 1.

The problem is that (unlike in a metric space) we cannot separate two different points
using open sets. To identify a class of topological spaces that avoid this problem, we make
the following definition.

Definition 5.26. A topological space T is Hausdorff if for any two distinct x, y ∈ T there
exist disjoint open sets U, V such that x ∈ U , y ∈ V .

Examples:

� Any metric space is Hausdorff. Take x, y ∈ X with x ̸= y and set ϵ = d(x, y) > 0.
Then

x ∈ B(x, ϵ/2), y ∈ B(y, ϵ/2), B(x, ϵ/2) ∩B(y, ϵ/2) = ∅.

As a consequence, any metrisable topological space must be Hausdorff.

� The indiscrete topology is not Hausdorff (the only open set containing x is T , which
also contains y), so is not metrisable.

� The co-finite topology on any infinite set is not Hausdorff: any two open sets have finite
complements, so they must intersect. It follows that this topology is not metrisable.

Lemma 5.27. In a Hausdorff space T any sequence has at most one limit.

Proof. Suppose that xn → x and xn → y with x ̸= y. Then we can find disjoint open sets
U, V with x ∈ U and y ∈ V . By the definition of convergence, there exist N1 ≥ 1 and N2 ≥ 1
such that

xn ∈ U ∀n ≥ N1 and xn ∈ V ∀n ≥ N2.

Taking some N ≥ max{N1, N2} yields a contradiction, as U ∩ V = ∅.

There are non-Hausdorff topologies in which convergent sequences have a unique limits,
see Problem Sheet 3.

5.7 Continuity between topological spaces

We have seen that we can characterise continuity between metric spaces using only open sets
(Theorem 4.7). We will use the same idea to define continuity between topological spaces.

Definition 5.28. A map f : T1 → T2 between two topological spaces (T1, T1) and (T2, T2) is
continuous if whenever U ⊂ T2 is open, f

−1(U) is open in T1 (i.e. if U ∈ T2 then f−1(U) ∈ T1).

Examples:

� Any constant map with f(x) = y for some fixed y ∈ T2. Then f−1(U) = T1 if y ∈ U
and f−1(U) = ∅ if y /∈ U .

� The identity map f : T1 → T1 (with the same topology in the domain and the image).
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� Continuous maps between metric spaces (with the topology coming from the metrics).

� Any map of a space with the discrete topology to any topological space (f−1(U) is a
subset of T1 and so open, because any set is open in the discrete topology).

� If T1 has the indiscrete topology then f : T1 → R is continuous if and only if it is
constant (we showed continuity of constant maps; if f is not constant then we have
f(x) ̸= f(y) for some x, y ∈ T1, and then, taking an open set U ⊂ R that contains
f(x) but not f(y), we have f−1(U) ⊃ f−1({f(x)}) ̸= ∅ (since it contains x) and
f−1(U) ̸= T1 (since it does not contain y).

To check that a map is continuous between two topological spaces it is enough to check it
for a sub-basis (since any basis is also a sub-basis, we could check for a basis if we wanted).

Lemma 5.29. Suppose that f : T1 → T2 is a map between two topological spaces (T1, T1)
and (T2, T2), and that B is a sub-basis for the topology T2. Then f is continuous if and only
if f−1(B) is open in T1 for every B ∈ B.

Not

examinable
Proof. The “only if” direction is clear since every element of the sub-basis is an element of
T2.

Now, any element U of T2 can be written as U =
⋃

i Di, where each Di is a finite
intersection of elements of B. So

f−1(U) = f−1

(⋃
i

Di

)
=
⋃
i

f−1(Di),

and, since for each Di we may write Di =
⋂n(i)

j=1Bj with Bj ∈ B, we have

f−1

(
n⋂

j=1

Bj

)
=

n⋂
j=1

f−1(Bj),

which is open by assumption. So f−1(U) is a union of open sets and hence is open.

5.8 Basic properties

We can easily give a topological version of Lemma 4.9.

Lemma 5.30. If (T1, T1), (T2, T2), and (T3, T3) are topological spaces and f : T1 → T2 and
g : T2 → T3 are continuous, then g ◦ f : T1 → T3 is continuous.

Proof. If U is open in T3, then g−1(U) is open in T2 by continuity of g. So (g ◦ f)−1(U) =
f−1(g−1(U)) is open in T1 by continuity of f .

We now discuss continuity in product spaces. Suppose that (T1, T1) and (T2, T2) are two
topological spaces. We define two projections on T1 × T2,

πj : T1 × T2 → Tj, j = 1, 2,
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by setting
π1(x, y) = x and π2(x, y) = y.

Lemma 5.31. For j = 1, 2, the projection πj : T1 × T2 → Tj is continuous (where we use
the product topology on T1 × T2).

Proof. If U1 ⊂ T1 is open, then π−1
1 (U1) = U1 × T2, which is open.

Lemma 5.32. Let (T, T ), (T1, T1) and (T2, T2) be topological spaces. A map f = (f1, f2) :
T → T1×T2 is continuous if and only if f1 and f2 are both continuous (i.e. π1 ◦ f and π2 ◦ f
are continuous).

Proof. (⇒) Since πj is continuous, so is πj ◦ f (by Lemma 5.30).
Not

examinable(⇐) By Lemma 5.29, we only have to show that f−1(B) is open for every set from a basis
for the product topology. But the sets U1 × U2, with Ui open in Ti, form a basis, and we
have

f−1(U1 × U2) = f−1
1 (U1) ∩ f−1

2 (U2)

is open in T .

If we consider maps from T → R then we can consider sums, products and quotients of
these maps.

Lemma 5.33. If f, g : T → R are continuous then so are f + g, fg, and f/g is continuous
on the set {x ∈ T : g(x) ̸= 0}.

Not

examinable
Proof. We give the argument for f+g, noting that the intervals (a,∞) and (−∞, b) (for every
a, b ∈ R) are a sub-basis for the topology of R. So it is enough to show that (f+g)−1((a,∞))
and (f + g)−1((−∞, b)) are open in T , using Lemma 5.29. We have

f(x) + g(x) > a ⇔ f(x) > a− g(x)

⇔ f(x) > r and r > a− g(x) for some r

⇔ f(x) > r and g(x) > a− r for some r.

It follows that

{x : f(x) + g(x) > a} =
⋃
r∈R

{x : f(x) > r} ∩ {x : g(x) > a− r},

which is open. Similarly, we can show that

f−1((−∞, b)) = {x : f(x) + g(x) < b}

is open.
Alternative proof: The function σ : R2 → R given by σ(x, y) = x + y is continuous from R2
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to R; it is in fact Lipschitz continuous from (R2, ϱ1) into R, since

dR(x1 + y1, x2 + y2) = |(x1 + y1)− (x2 + y2)|
≤ |x1 − x2|+ |y1 − y2| ≤ ϱ1((x1, y1), (x2, y2)).

The map x 7→ (f(x), g(x)) is continuous from T into R2 by Lemma 5.32. So the composition
(σ ◦ (f, g))(x) = f(x) + g(x) is continuous from T into R. A similar argument works for
products and quotients.

Example: The map from R2 → R2 given by

(x, y) 7→ (x+ y, sin(x2y3))

is continuous. We know that (x, y) 7→ x and (x, y) 7→ y are both continuous (they are
projections - Lemma 5.31), as are the maps (x, y) 7→ x+ y [sums of continuous functions are
continuous], (x, y) 7→ x2y3 [products of continuous functions are continuous], and (x, y) 7→
sin(x2y3) [composition with the continuous function t 7→ sin(t)]. Since both components are
continuous, the whole map is continuous (Lemma 5.31 again).

Not

examinable

5.9 The projective topology and product spaces

Consider a set T (without a topology), a collection of topological spaces (Tj, Tj) and a
collection of maps fj : T → Tj, where j is in some arbitrary indexing set J . This data
allows us to define a topology on T .

Definition 5.34. The projective topology on T is the coarsest topology for which all the
maps fj : T → Tj are continuous.

Let us unpick this definition. Recall that the “coarsest topology” is the one with the
smallest collection of open sets. In order for fj to be continuous, we must have that f−1

j (U)
is open whenever U ∈ Tj. So the projective topology contains

B :=
⋃
j∈J

{f−1
j (U) : U ∈ Tj}.

This is not a basis for a topology since if B1, B2 ∈ B then B1 ∩B2 is not necessarily a union
of sets in B. However, the union of sets in B is equal to T (since, for any j, f−1

j (Tj) = T ),
so we can apply Proposition 5.9 to get that the projective topology is the unique topology
with B as a sub-basis.

An example of this way of obtaining a topology is given by the product topology defined
in the previous section. Let (T1, T1) and (T2, T2) be topological spaces. Recall that the
product topology T on T1 × T2 is the topology with basis

{U1 × U2 : U1 ∈ T1, U2 ∈ T2}.
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We claim that the product topology T on T1 × T2 may also be characterised as the coarsest
topology for which the two projection maps πj : (T1 × T2) → Tj (j = 1, 2) are continuous,
which we’ll call T ′. We need to show T ′ = T . First note that, for any U1 ∈ T1, T ′ must
contain π−1

1 (U1) = U1 × T2 and, similarly, for any U2 ∈ T2, T ′ must contain π−1
2 (U2) =

T1 × U2. So T ′ must contain the intersection of such sets, i.e. U1 × U2. In other words,
T ′ ⊃ B and therefore T ′ ⊃ T . On the other hand, by definition, for U1 ∈ T1, T contains
U1×T2 = π−1

1 (U1) and, for U2 ∈ T2, T contains T1×U2 = π−1
2 (U2). So, T is a topology that

makes π1 and π2 continuous. Since T ′ is the coarsest such topology, we have T ⊃ T ′. Hence
T = T ′, as required.

We will use this approach to define the product topology for an arbitrary product.

Definition 5.35. Let (Tj, Tj), j ∈ J , be an arbitrary collection of topological spaces. Their
product T =

∏
j∈J Tj is the set of all functions x : J →

⋃
j∈J Tj such that x(j) ∈ Tj (see

Appendix 9.2 for more details). The product topology T on T is the coarsest topology for
which all of the projections

πj : T → Tj : x 7→ x(j)

are continuous. We then call the topological space (T, T ) the topological product of the
spaces (Tj, Tj).

A sub-basis for the product topology consists of all sets of the form∏
j∈J

Uj,

where Uj ∈ Tj with Uj = Tj except for a finite number of the j.

5.10 Homeomorphisms

We have already defined the notion of a homeomorphism between two metric spaces. The
definition between two topological spaces is essentially the same.

Definition 5.36. Let (T1, T1) and (T2, T2) be topological spaces. A bijection f : T1 → T2 is
a homeomorphism if any one of the following equivalent conditions holds:

(i) both f and f−1 are continuous;

(ii) V is open in T2 if and only if f−1(V ) is open in T1;

(iii) U is open in T1 if and only if f(U) is open in T2.

If there is a homeomorphism f : T1 → T2 we say that (T1, T1) and (T2, T2) are homeomorphic.

Note: There are continuous bijections that are not homeomorphisms, for example, let T1 be
[0, 1] with the standard topology, T2 be [0, 1] with the indiscrete topology, and consider the
identity map from T1 to T2. Then the only open sets in T2 are ∅ and [0, 1], and these are
also open in T1 (so that identity map is continuous from T1 to T2); but there are many open
sets in T1 that are not open in T2 (so the inverse – also the identity – is not continuous).
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Definition 5.37. A property of topological spaces is a topological invariant (or ‘topological
property’) if it is preserved by homeomorphisms.

Examples:

� T is finite;

� T is Hausdorff;

� T is metrisable;

� every continuous real-valued function on T is bounded.

To show that two sets are not homeomorphic, we need to find a topological property that
one has and the other does not. For example, [0, 1] and R are not homeomorphic - every
continuous function real-valued on [0, 1] is bounded, but this is not true on R.

41



6 COMPACTNESS

6 Compactness

6.1 Definition and the Heine–Borel Theorem

Definition 6.1. A cover of a set A is collection U of sets whose union contains A:

A ⊂
⋃
U∈U

U.

A subcover of a cover U is a subset of U whose elements still cover A. A cover is open if all
of its elements are open.

Examples:

� {(n, n+ 3) : n ∈ Z} is an open cover of R; {(2k, 2k + 3) : k ∈ Z} is a subcover;

� {(n, n+ 1) : n ∈ Z} is not an open cover of R [since it does not contain the integers);

� {(a − 1, a + 1) : a ∈ R} is a cover of R; {(a − 1, a + 1) : a ∈ Z} is a subcover;
{(2a − 1, 2a + 1) : a ∈ Z} is not a subcover (since it misses out all odd integers)
and {(a − 1/2, a + 1/2) : a ∈ R} is not a subcover (it does cover R, but it is not a
subcollection of the original cover).

Definition 6.2. A topological space T is compact if every open cover of T has a finite
subcover.

Examples of non-compact spaces:

� (0, 1) is not compact - {(0, a) : a ∈ (0, 1)} is an open cover with no finite subcover;

� R is not compact - {(−∞, a) : a ∈ Z} has no finite subcover.

Definition 6.3. A subset S of T is compact if every open cover of S by subsets of T has a
finite subcover. This is the same as S being compact with the subspace topology.

Lemma 6.4. If T is a topological space and S ⊂ T then S is compact in the sense of
Definition 6.3 if and only if (S, TS) is compact in the sense of Definition 6.2.

Proof. Suppose that S is a compact subset of T (using Definition 6.3). Any open cover U of
(S, TS) consists of sets of the form U = V (U) ∩ S where V (U) is open in T ; so

S ⊂
⋃
U∈U

U =
⋃
U∈U

V (U) ∩ S ⊂
⋃
U∈U

V (U);

since this is an open cover of S by open sets in T it has a finite subcover:

S ⊂
n⋃

j=1

V (Uj).

Now we have

S ⊂
n⋃

j=1

V (Uj) ∩ S =
n⋃

j=1

Uj,
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i.e. the original cover has a finite subcover.
If (S, TS) is compact (using Definition 6.2) and U is an open cover of S (using sets in T )

then
S ⊂

⋃
U∈U

U ⇒ S ⊂
⋃
U∈U

U ∩ S;

this gives an open cover of S by sets in TS, so this has a finite subcover,

S ⊂
n⋃

j=1

Uj ∩ S ⊂
n⋃

j=1

Uj,

so U also has a finite subcover.

The most basic compactness theorem is the Heine–Borel Theorem.

Theorem 6.5 (Heine–Borel Theorem). Any closed interval [a, b] is a compact subset of R
(with the usual topology).

We will allow the notation [x, x] = {x} in the proof.

Proof. Let U be a cover of [a, b] by open subsets of R.
Let A denote the set all of x ∈ [a, b] such that [a, x] can be covered by a finite subcover

taken from U . Since a ∈ A (we can certainly cover [a, a] = {a} by one element of U) the set
A is non-empty.

The set A is also bounded above by b, so we can set c = supA. Since a ≤ c ≤ b, we must
have c ∈ U for some U ∈ U . Since U is open, we have (c− δ, c+ δ) ⊂ U for some δ > 0.

Since c = supA, there exists some x ∈ A with x > c− δ. It follows that

[a, c+ δ) = [a, x] ∪ (c− δ, c+ δ)

can also be covered by a finite collection of sets from U , since [a, x] can be and (c−δ, c+δ) ⊂
U ∈ U .

It follows (i) that c = b, for otherwise c < b and this yields a cover of

[a,min(c+ δ/2, b)]

by a finite number of sets from U , contradicting the fact that c = supA; so (ii) a finite
collection of sets from U cover [a, b+ δ) ⊃ [a, b], which is what we wanted.

6.2 Compact vs closed

We now investigate the relationship between compactness and being closed/bounded.

Lemma 6.6. Any closed subset S of a compact space T is compact.

Proof. Let U be a cover of S by open subsets of T . Then U ∪ {T \S} is an open cover of T ,
so has a finite subcover; elements of this subcover (removing T \ S if it is included) provide
a finite open subcover of S.
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Lemma 6.7. Any compact subset K of a Hausdorff space T is closed.

Proof. Suppose that a ∈ T \K. For each x ∈ K there exist disjoint open sets Ux ∋ x and
Vx ∋ a. The open sets {Ux : x ∈ K} form an open cover of K, so there is a finite subcover
Ux1 , . . . , Uxn of K. Then

V =
n⋂

i=1

Vxi

is an open set that contains a that is disjoint from K. Thus T \K is open. Since T \K is
open, K is closed.

Note that the result need not be true if T is not Hausdorff. Consider any set T containing
at least two points with the indiscrete topology. Then any subset S of T is compact, since
the only open covers of S that are available available are {∅, T} and {T}, which always have
a finite subcover. But S is not closed unless S = ∅ or S = T .

Lemma 6.8. Any compact subset K of a metric space (X, d) is bounded.

Proof. Choose any a ∈ X. If x ∈ K then x ∈ B(a, r) for all r > d(a, x). Hence K is covered
by the collection of open balls {B(a, r) : r > 0}, so there is a finite subcover

{B(a, ri) : i = 1, . . . , n},

so

K ⊂
n⋃

i=1

B(a, ri) = B(a,max
i

ri),

giving that K is bounded.

Corollary 6.9. A subset of R (with the usual topology) is compact if and only if it is closed
and bounded.

Proof. Since R is a metric space, any compact subset is bounded; since it is Hausdorff, any
compact subset is closed.

If K ⊂ R is bounded then K ⊂ [−R,R] for some R > 0. Then K is a closed subset of
the compact set [−R,R], so is compact.

Theorem 6.10. Let F be a collection of non-empty closed subsets of a compact space T
such that every finite subcollection of F has a non-empty intersection. Then the intersection
of all the sets from F is non-empty.

Proof. Suppose that the intersection of all the sets from F is empty, and let U be the
collection of their complements,

U := {T \ F : F ∈ F}.

Then U is an open cover of T , since

T \
⋃
U∈U

U =
⋂
U∈U

(T \ U) =
⋂
F∈F

F = ∅.
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Thus U has a finite subcover U1, . . . , Un, which implies that

∅ = T \
n⋃

i=1

Ui =
n⋂

i=1

Fi,

a contradiction.

One can also reverse this proof: if T is a topological space such that this result holds
then T is compact (see Problem Sheet 6).

Corollary 6.11. Let F1 ⊃ F2 ⊃ F3 ⊃ · · · be non-empty closed subsets of a compact space
T . Then

⋂∞
j=1 Fj ̸= ∅.

6.3 Compactness of products and compact subsets of Rn

We now show that products of compact spaces are compact.

Theorem 6.12. If T and S are compact topological spaces then T × S is compact.

We write T for the topology on T and S for the topology on S. Recall that the product
topology on T × S is the topology with basis

{U × V : U ∈ T , V ∈ S},

i.e. open sets in T × S are formed of unions of sets of the form U × V . It follows that if
(t, s) ∈ W ⊂ T × S, with W an open set in T × S, there exist U ∈ T and V ∈ S such that

(t, s) ∈ U × V ⊂ W.

Proof. Suppose that U is an open cover of T × S.
We first show the following claim.

Claim: For each s ∈ S there is an open set N(s) ⊂ S with s ∈ N(s) [an open neighbourhood
of s in S] such that T ×N(s) can be covered by a finite subfamily of U .
Justification: For each x ∈ T , we can find Wx ∈ U such that (x, s) ∈ Wx. By the definition
of the product topology (see above) there exist Ux ∈ T , Vx ∈ S such that

(x, s) ∈ Ux × Vx ⊂ Wx.

The sets Ux form an open cover of T , so they contain a finite subcover Ux1 , . . . Uxn . If we let

N(s) =
n⋂

i=1

Vxi

then N(s) ⊂ S is open, s ∈ N(s) (so it is not empty), and

T ×N(s) ⊂
n⋃

i=1

(Uxi
× Vxi

) ⊂
n⋃

i=1

Wxi
.
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This proves the claim.

We now complete the proof of the theorem. The family {N(s) : s ∈ S} forms an open
cover of S, so there is a finite subcover {N(s1), . . . , N(sn)} that covers S. Thus

T × S =
n⋃

j=1

T ×N(sj).

This is a finite union, and, by the claim, each of the sets T × N(sj) can be covered by a
finite subfamily of U , so T × S can be covered by a finite subfamily of U .

The following corollary is immediate.

Corollary 6.13. The product of a finite number of compact spaces is compact.

The following result, however, involves some quite powerful mathematical machinery, and
we will not prove it here.

Theorem 6.14 (Tychonov’s Theorem). The product of any collection of compact spaces is
compact (with the product topology).

As an application of Corollary 6.13, we can characterise the compact subsets of Rn.

Theorem 6.15 (Heine–Borel in Rn). A subset of Rn is compact if and only if it is closed
and bounded.

Proof. Let K be a compact subset of Rn. Any metric space is Hausdorff: so it follows from
Lemma 6.7 that K is closed, and from Lemma 6.8 that K is bounded.

For the converse, observe that if K is bounded then K ⊂ [−R,R]n for some R > 0. Since
[−R,R] is compact, it follows from Theorem 6.12 that [−R,R]n is compact. Now K, as a
closed subset of [−R,R]n, must be compact, using Lemma 6.6.

Note, however, that in general metric spaces closed and bounded does not imply compact.
For example, the set (0, 1) in the metric space (0, 1) is closed and bounded, but not compact.

6.4 Continuous functions on compact sets

Theorem 6.16. A continuous image of a compact space is compact.

Proof. Let T be compact and f : T → S continuous. Let U be an open cover of f(T ); since
f is continuous, the sets f−1(U), U ∈ U , are open, and form a cover of T . [For every x ∈ T ,
f(x) ∈ f(T ), so f(x) ∈ U for some U ∈ U .] Since T is compact, there is a finite subcover of
T , f−1(U1), . . . , f

−1(Un).
Now, every y ∈ f(T ) is given by y = f(x) for some x ∈ X. We have x ∈ f−1(Uj) for

some j, so y = f(x) ∈ Uj. So U1, . . . , Un are a cover of f(T ).

This shows that compactness is a topological property (which, one might argue, was clear
already from its definition).
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Theorem 6.17. A continuous bijection of a compact space T onto a Hausdorff space S is a
homeomorphism.

We use Corollary 4.8, which also works in a topological space: a function f : T → S is
continuous if and only if f−1(V ) is closed in T whenever V is closed in S.

Proof. We need to show that f−1 : S → T is continuous; since f is a bijection we have
(f−1)−1(K) = f(K) for any K ∈ T .

Take any closed K in T . Then K is compact by Lemma 6.6. It follows that f(K) is
compact in S by the previous theorem. Since S is Hausdorff, f(K) is closed (Lemma 6.7).

Example. Let f : [0, 1] → Rn be an injective continuous function (so this is an injective
continuous curve). Then f([0, 1]) is homeomorphic to [0, 1].
(Indeed, [0, 1] is compact, and Rn (and all metric spaces) are Hausdorff, and its subsets are
also Hausdorff, so Theorem 6.17 can be applied with T = [0, 1] and S = f([0, 1]).)

Not

examinableWe know that f : T → R is continuous if the preimage of every open set is open. For
functions from T → R we can split ‘continuity’ into two parts, which also provides a quick
proof of an extremely important result that generalises the Extreme Value Theorem.

Definition 6.18. A function f : T → R is lower semicontinuous if for every c ∈ R the set
f−1(c,∞) is open. It is upper semicontinuous if for every c ∈ R the set f−1(−∞, c) is open.

Observe that if f : T → R is both upper and lower semicontinuous then

f−1(a,∞) ∩ f−1(−∞, b) = f−1(a, b)

is open for every a, b ∈ R, and so f is continuous. (The preimage of every set in a basis for
the topology on R is open, and so f is continuous by Lemma 5.29.)

Theorem 6.19. If T is non-empty and compact and f : T → R is lower semicontinuous
then it is bounded below and attains its minimum. If f is upper semicontinuous then it is
bounded above and attains its maximum.

Proof. Let c = infx∈T f(x). Suppose that f is lower semicontinuous and does not attain the
value c; this certainly occurs if c = −∞.

In this case f(x) > c for every x ∈ T , and so the open sets

{x : f(x) > r} = f−1(r,∞), r > c,

cover T . Since T is compact, there is a finite subcover by sets

{x : f(x) > rj}, j = 1, . . . , n.

But the union of these sets is {x : f(x) > minj rj}, and minj rj > c, contradicting the
definition of c.
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Corollary 6.20. If T is non-empty and compact then a continuous function f : T → R is
bounded and attains its bounds.

Recall that a real-valued function f : T → R is bounded if there is a real number C such
that |f(x)| ≤ C for all x ∈ T , equivalently, f(T ) is a bounded subset of R.

A real-valued function f : T → R attains its bounds if it attains its maximum and
minimum, that is, there are xmin, xmax ∈ X such that

f(xmin) = inf
x∈T

f(x)

f(xmax) = sup
x∈T

f(x).

(For example, the function arctan x on R is bounded but does not attain its bounds.)

Direct proof of Corollary 6.20. Since T is compact and f : T → R is continuous, f(T ) is a
compact subset of R. So f(T ) is closed and bounded. Now note that any closed and bounded
subset F of R contains its supremum: for each n ∈ N there exists xn ∈ F such that

supF − 1

n
< xn ≤ supF,

so xn → supF , and since F is closed we have supF ∈ F .
Therefore f(T ) contains its supremum. It follows that there exists xmax ∈ T such that

f(xmax) = supx∈T f(x). We can argue similarly for the infimum.

6.5 Equivalence of all norms on Rn

We now use Corollary 6.20 to show that all norms on Rn are equivalent, i.e. given any two
norms ∥ · ∥1 and ∥ · ∥2 on Rn there are constants 0 < c1 ≤ c2 such that

c1∥x∥1 ≤ ∥x∥2 ≤ c2∥x∥1 for every x ∈ Rn.

This means that there is only one topology on Rn that comes from a norm (the ‘standard
one’).

Theorem 6.21. All norms on Rn are equivalent.
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Not

examinableProof. We show that any norm ∥ · ∥ is equivalent to the standard ‘Euclidean’ norm ∥ · ∥ℓ2 .
Let (ej)

n
j=1 be an orthonormal basis for Rn, so that any x ∈ Rn can be written

x =
n∑

j=1

xjej.

The standard norm is given by

∥x∥2ℓ2 =
n∑

j=1

|xj|2.

Now we have

∥x∥ =

∥∥∥∥∥
n∑

j=1

xjej

∥∥∥∥∥ ≤
n∑

j=1

|xj|∥ej∥

≤

(
n∑

j=1

|xj|2
)1/2( n∑

j=1

∥ej∥2
)1/2

= c2∥x∥ℓ2 ,

where c2 =
(∑n

j=1 ∥ej∥2
)1/2

.

Replacing x by x − y this yields ∥x − y∥ ≤ c2∥x − y∥ℓ2 , and so the map x 7→ ∥x∥ is
continuous from (Rn, ∥ · ∥ℓ2) to R. Now, the unit sphere

S := {x ∈ Rn : ∥x∥ℓ2 = 1}

is a closed bounded subset of Rn, so is compact. It follows that the continuous map x 7→ ∥x∥
is bounded and attains its bounds. In particular, it is bounded below: if ∥x∥ℓ2 = 1 then
∥x∥ ≥ c1 for some c1 ≥ 0. We must have c1 > 0, since the function attains its bounds; if
c1 = 0 then there would be some x ∈ S with ∥x∥ = 0. Since ∥ · ∥ is a norm this would imply
that x = 0; but we know that ∥x∥ℓ2 = 1, so this is impossible.

It follows that ∥x∥ℓ2 = 1 implies that ∥x∥ ≥ c1. Now for any non-zero y ∈ Rn we can set
x = y/∥y∥ℓ2 and then

∥x∥ℓ2 = 1 ⇒
∥∥∥∥ y

∥y∥ℓ2

∥∥∥∥ ≥ c1 ⇒ ∥y∥ ≥ c1∥y∥ℓ2 .

Note: There are many non-equivalent metrics on Rn, e.g. the discrete metric is not equivalent
to any of the ℓp metrics.
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6.6 Lebesgue numbers and uniform continuity

Definition 6.22. Let U be an open cover of a metric space (X, d). A number δ > 0 is called
a Lebesgue2 number for U if for any x ∈ X there exists U ∈ U such that B(x, δ) ⊂ U .

In general an open cover will not have a Lebesgue number. For example the sets (x/2, x),
x ∈ (0, 1), form an open cover of (0, 1) with no Lebesgue number.

Proposition 6.23. Every open cover U of a compact metric space (X, d) has a Lebesgue
number.

Not

examinable
First proof. For each x ∈ X let

r(x) = sup{r ∈ (0, 1] : B(x, r) ⊂ U, for some U ∈ U}.

Note that r(x) > 0 for every x, since if x ∈ X then x ∈ U for some U , and since U is open
there exists r > 0 such that B(x, r) ⊂ U .

If we can show that r : X → R is lower semicontinuous then we can use Theorem 6.19
to show that r is bounded below and attains its bound, and then δ := (infx∈X r(x))/2 > 0
is a Lebesgue number of U .

So take c ∈ R and consider

W = r−1(c,∞) = {y ∈ X : r(y) > c};

we need to show that W is open. Take x ∈ W , set ϵ = (r(x) − c)/3, and find U ∈ U such
that

B(x, r(x)− ϵ) ⊂ U

(this is possible since B(x, r) ⊂ U for some U ∈ U for any r < r(x)). It follows that if
d(y, x) < ϵ then

B(y, c+ ϵ) ⊂ B(x, c+ 2ϵ) = B(x, r(x)− ϵ) ⊂ U,

so r(y) ≥ c+ ϵ > c; it follows that B(x, ϵ) ⊂ W , so W is open.

Second proof. For every x ∈ X there exists r(x) > 0 such that

B(x, r(x)) ⊂ U(x) for some U(x) ∈ U .

The collection {B(x, r(x)/2) : x ∈ X} forms an open cover of X, so has a finite subcover

{B(xj, r(xj)/2) : j = 1, . . . , n}.

Set δ = minj r(xj)/2; we claim that δ is a Lebesgue number for U .
Given any x ∈ X, we must have x ∈ B(xj, r(xj)/2) for some j. Then, since δ ≤ r(xj)/2

for all j,

B(x, δ) ⊂ B(xj,
r(xj)

2
+ δ) ⊂ B(xj, r(xj)) ⊂ U(xj);

so δ is a Lebesgue number for U .
2Named after the French mathematician Henri Lebesgue, 1875–1941, who created Lebesgue theory of

integration, seen in the module MA359 Measure Theory.
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We can use this to give a quick proof of the uniform continuity of continuous maps on
compact metric spaces.

Definition 6.24. A map f : (X, dX) → (Y, dY ) is uniformly continuous if for every ϵ > 0
there exists δ > 0 such that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ϵ

for any x, y ∈ X.

Note that the key point of the definition is that δ does not depend on x or y.

Theorem 6.25. A continuous map from a compact metric space into a metric space is
uniformly continuous.

Proof. Let f : X → Y be continuous and choose ϵ > 0. For z ∈ X, define

Uz = f−1(BY (f(z), ϵ/2)).

Then the sets Uz, z ∈ X, form an open cover U of X. Let δ be a Lebesgue number of this
cover. Then if x, y ∈ X and dX(x, y) < δ we have y ∈ B(x, δ); by the definition of δ, there
is an element Uz of U such that B(x, δ) ⊂ Uz. But then

dY (f(x), f(y)) ≤ dY (f(x), f(z)) + dY (f(z), f(y)) < ϵ.

6.7 Sequential compactness

Definition 6.26. A subset K of a metric space (X, d) is sequentially compact if every
sequence in K has a convergent subsequence whose limit lies in K.

Note we can take K = X in the definition. We want to show that compactness and
sequential compactness in a metric space are equivalent. First we need a lemma guaranteeing
the existence of a Lebesgue number of an open cover of a sequentially compact set. (We
already know that there is one when the set is compact.)

Lemma 6.27. If K is a sequentially compact subset of a metric space then any open cover
of K has a Lebesgue number.

Proof. Suppose that U is an open cover of K that does not have a Lebesgue number. Then
for every ϵ > 0 there exists x ∈ K such that B(x, ϵ) is not contained in any element of U .

Choose xn such that B(xn, 1/n) is not contained in any element of U .
Then xn has a convergent subsequence, xnj

→ x. Since U covers K, x ∈ U for some
element U ∈ U . Since U is open, B(x, ϵ) ⊂ U for some ϵ > 0.

But now take j sufficiently large that d(xnj
, x) < ϵ/2 and 1/nj < ϵ/2. ThenB(xnj

, 1/nj) ⊂
B(x, ϵ) ⊂ U , contradicting the definition of xnj

.

Theorem 6.28. A subset of a metric space is sequentially compact if and only if it is
compact.
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Recall that if a sequence (xn) converges then it must be Cauchy: for every ϵ > 0 there
exists N such that d(xn, xm) < ϵ for all n,m ≥ N (to prove this observe that if xn → x
then there exists N such that d(xn, x) < ϵ/2 for all n ≥ N ; then n,m ≥ N implies that
d(xn, xm) ≤ d(xn, x) + d(x, xm) < ϵ).

Proof. Step 1: Compactness implies sequential compactness.
Let (xj) be a sequence in a compact set K. Consider the sets Fn defined by setting

Fn = {xn, xn+1, . . .}.

The sets Fn are a decreasing sequence of closed subsets of K, so we can find

x ∈
∞⋂
j=1

Fj.

We now show that there is a subsequence that converges to x:

� since x ∈ {xj : j ≥ 1} there exists j1 such that d(xj1 , x) < 1;

� since x ∈ {xj : j > j1} there exists j2 > j1 such that d(xj2 , x) < 1/2;

� continue in this way to find jk > jk−1 such that d(xjk , x) < 1/k.

Then xjk is a subsequence of (xj) that converges to x. So K is sequentially compact.

Step 2: Sequential compactness implies compactness.
First we show that for every ϵ > 0 there is a cover of K by a finite number of sets of the

form B(xj, ϵ) for some xj ∈ K.
Suppose that this is not true, and that we have found points {x1, . . . , xn} such that

d(xi, xj) ≥ ϵ for all i, j = 1, . . . , n. Since the collection B(xj, ϵ) does not cover K, there exists
xn+1 ∈ K such that the points {x1, . . . , xn+1} all satisfy d(xi, xj) ≥ ϵ for all i, j = 1, . . . , n+1.

Now the sequence (xj) has no Cauchy subsequence, so no convergent subsequence, a
contradiction.

Now given any open cover U of K consider the finitely many points y1, . . . , yN such that
B(yi, δ) cover K, where δ is the Lebesgue number of the original cover. Then B(yi, δ) ⊂ Ui

for some Ui ∈ U , and we have

K ⊂
N⋃
i=1

B(yi, δ) ⊂
N⋃
i=1

Ui,

so we have found a finite subcover.

Remark: One can define sequentially compactness for an arbitrary topological space: a space
(T, T ) is sequentially compact if every sequence in T has a convergent subsequence whose
limit lies in T . However, then compactness and sequential compactness are not necessarily
equivalent. However, examples of spaces where they are not equivalent go beyond the scope
of this course.
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6.8 Normed spaces

Note that the equivalence of compactness and sequential compactness in any metric space
shows that these concepts are also equivalent in any normed space.

It is now easy to show that there are closed bounded subsets in general normed spaces
that are not compact.

Example: the closed unit ball in ℓp is not compact for any 1 ≤ p ≤ ∞. Consider the
sequence (e(j))∞j=1. Then this has no convergent subsequence: any such subsequence would
have to be Cauchy, but

∥e(j) − e(k)∥ℓp =

{
21/p 1 ≤ p < ∞
1 p = ∞.

In fact more is true.

Theorem 6.29. A normed space is finite-dimensional if and only if its closed unit ball is
compact.

We will not prove this here, but see Functional Analysis I.

53



7 CONNECTEDNESS

7 Connectedness

7.1 Definitions of connected/disconnected

Definition 7.1. We say that a pair of sets (A,B) is a partition of a topological space T if
T = A ∪B and A ∩B = ∅; and we then say that A and B partition T .

Note that if two open sets A and B partition T then A and B are also both closed.

Definition 7.2. A topological space T is connected if the only partitions of T into open sets
are (T,∅) and (∅, T ). The space T is said to be disconnected if it is not connected.

Lemma 7.3. The following are equivalent:

(i) T is disconnected;

(ii) T has a partition into two non-empty open sets;

(iii) T has a partition into two non-empty closed sets;

(iv) T has a subset that is both open and closed and is neither ∅ nor T ;

(v) there is a continuous function from T onto the two-point set {0, 1} with the discrete
topology.

Proof. (i) ⇔ (ii): This follows by definition of what it means to be ‘not connected’

(ii) ⇔ (iii): If T = A ∪B with A and B open (closed) then B = T \A is closed (open) and
A = T \B is closed (open).

(ii) ⇔ (iv): Assume (ii), so we can write T = A ∪ B, with A,B open, A ∩ B = ∅ and
A,B ̸= ∅, T . As argued above, A and B are also closed, so (iv) holds. Now assume (iv) and
let A ⊂ T be both open and closed and neither ∅ or T . Then B = T \ A is open and A,B
give a partition of T .

(ii) ⇒ (v): Assume (ii). Then we can write T = A ∪ B, A,B open, with A ∩ B = ∅.
Set f(x) = 0 if x ∈ A and f(x) = 1 if x ∈ B. Then f−1(0) = A, f−1(1) = B, and
f−1({0, 1}) = T , so the inverse image of all open sets are open and f is continuous.

(v) ⇒ (ii): Assume that f : T → {0, 1} is a continuous surjection. Set A = f−1(0) and
B = f−1(1); both of these sets are open since f is continuous; they are non-empty since f is
onto; and A ∪B = T and A ∩B = ∅.

Note that we can use (v) to show that a space is connected by showing that any continuous
function f : T → {0, 1} must be constant.

It follows from (iv) that if a space T is connected then if a subset A of T is both open
and closed then it must be empty or all of T .

Definition 7.4. A subset S of T is connected/disconnected if (S, TS) is connected/disconnected
(i.e. S is connected/disconnected using the subspace topology).

In general to decide on connectedness of subsets we need the following definition.
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Definition 7.5. A set S ⊂ T is separated by subsets U, V ∈ T if

S ⊂ U ∪ V, U ∩ V ∩ S = ∅, U ∩ S ̸= ∅, V ∩ S ̸= ∅.

Proposition 7.6. A subspace S of a topological space T is disconnected if and only if it is
separated by some open subsets U, V ∈ T .

Proof. If S is disconnected then there are non-empty A,B ⊂ TS such that S = A ∪ B and
A ∩ B = ∅. By the definition of the subspace topology, there exist U, V ∈ T such that
A = U ∩ S and B = V ∩ S. Then U and V separate S.

Conversely, if U and V separate S then U ∩ S, V ∩ S partition S.

7.2 Connected subsets of R
We will show that any connected subset of R must be an interval. By ‘an interval’ we mean
a set of the form

� ∅, {a} for any a ∈ R;

� [a, b] where a < b;

� (a, b] where a < b and a = −∞ is allowed;

� [a, b) where a < b and b = ∞ is allowed;

� (a, b) where a < b and a = −∞ and b = ∞ are allowed.

Lemma 7.7. A set I ⊂ R is an interval if and only if whenever x, y ∈ I and x < z < y we
have z ∈ I.

Proof. The intervals listed all have this property. We show the converse. Given I ⊂ R with
this property, let a = inf I and b = sup I. Certainly (a, b) ⊂ I: if z ∈ (a, b) then there exists
α, β ∈ I with α < z < β (by the definition of a and b), which implies that z ∈ I. Now

(a, b) ⊂ I ⊂ (a, b) ∪ {a, b},

depending on whether a, b ∈ I.

Theorem 7.8. A subset of R is connected if and only if it is an interval.

Proof. Step 1: If I ⊂ R is connected then it is an interval. Suppose that I is not an interval.
Then there exist x, y, z such that x < z < y, x, y ∈ I and z /∈ I. Let A = (−∞, z) ∩ I
and B = (z,∞) ∩ I. Then A and B are disjoint, open in I (by definition of the subspace
topology on I), and non-empty (since x ∈ A and y ∈ B). We also have I = A ∪ B, since
z /∈ I. So I is not connected, a contradiction.

[If you prefer you can think of this as a contrapositive argument: if I is not an interval
then it is not connected; so any connected set is an interval.]
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Step 2: Any interval is a connected set in R. If I is not connected then there is a continuous
surjective map f : I → {0, 1}. Note that if we consider f : I → R then this is also continuous,
since given any open subset U of R we have

f−1(U) =


f−1({0}) 0 ∈ U, 1 /∈ U,

f−1({1}) 1 ∈ U, 0 /∈ U,

f−1({0}) ∪ f−1({1}) 0, 1 ∈ U,

∅ 0, 1 /∈ U,

and all these sets are open.
But if f(x) = 0 and f(y) = 1, the Intermediate Value Theorem implies that f takes all

values in between, which is not possible.

7.3 Operations on connected sets

Proposition 7.9. Suppose that Cj, j ∈ J , are connected subsets of T and Ci ∩ Cj ̸= ∅ for
each i, j, then

K =
⋃
j∈J

Cj

is connected.

Proof. Suppose that f : K → {0, 1} is continuous. Since each Cj is connected, f(Cj) = {δj},
where δj = 0 or 1 for each j. Since Ci ∩ Cj is always non-empty, it follows that f(Cj) takes
the same value for every j ∈ J . So f cannot be onto and K is connected.

Lemma 7.10. Suppose that C1 and C2 are connected subsets of T and C1 ∩ C2 ̸= ∅. Then
C1 ∪ C2 is connected.

Proof. Let K = C1 ∪C2 and suppose that f : K → {0, 1} is continuous. Then f(C1) = {0},
say. Suppose that f(C2) = {1}. Then f−1({1}) is an open subset of K, so is given by U ∩K
for some open set U in T .

Now, since C1∩C2 is non-empty, there is a point x ∈ C2 such that any open neighbourhood
of x in T intersects C1. The set U is one such set, so

U ∩ C1 ̸= ∅.

But C1 ⊂ K so this is the same as

U ∩K ∩ C1 ̸= ∅ f−1({1}) ∩ C1 ̸= ∅;

this is a contradiction (since f(C1) = {0}), so f cannot be onto.

Theorem 7.11. Suppose that C and Cj (j ∈ J ) are connected subsets of T and Cj ∩C ̸= ∅
for each j. Then

K = C ∪
⋃
j∈J

Cj

is connected.
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Proof. Set C ′
i = C ∪Ci. Then each C ′

i is connected (by Lemma 7.10), C ′
i ∩C ′

j ̸= ∅ for every
i, j, and K =

⋃
j C

′
j. The result now follows from Proposition 7.9.

Corollary 7.12. If C ⊂ T is connected then so is any set K satisfying C ⊂ K ⊂ C.

Proof. We have K = C ∪
⋃

x∈K{x} and {x} ∩ C ̸= ∅ for each x ∈ K.

Theorem 7.13. The continuous image of a connected set is connected.

Proof. Suppose that f : T → S is continuous and that T is connected. If f(T ) is not
connected then there exists a surjective continuous map g : f(T ) → {0, 1}. But then
g ◦ f : T → {0, 1} is continuous and surjective, contradicting the connectedness of T .

This shows that connectedness is a topological property, i.e. if T and S are homeomorphic
and T is connected then S is connected.

Theorem 7.14. The product of two connected spaces is connected.

Proof. Let T and S be two connected sets, and pick s0 ∈ S. Define C := T × {s0} and
Ct := {t} × S. Then C is homeomorphic to T and Ct is homeomorphic to S, so both are
connected. We have Ct ∩ C ̸= ∅ (both sets contain (t, s0)) and

T × S = C ∪
⋃
t∈T

Ct,

so the result now follows from Theorem 7.11.

Examples: To show that a set is connected, we construct it from continuous images of
connected sets (e.g. intervals), via products or unions.

� R2 = R× R is connected (Theorem 7.14).

� Circles are connected (the continuous image of intervals).

� R2 \ {0} is connected (the union of circles about (0, 0), each of which intersects the
positive x axis).

� The ‘topologist’s sine curve’

S :=

{(
x, sin

1

x

)
: x ∈ R, x ̸= 0

}
∪ {(0, 0)}

is connected.

Put S− = {(x, sin(1/x)) : x < 0}, S+ = {(x, sin(1/x)) : x > 0}, and O = {(0, 0)};
all three of these sets are connected. O is a point so connected, and S− and S+

are connected as images of the intervals (−∞, 0) and (0,∞) respectively under the
continuous map x 7→ (x, sin(1/x)).

Note that O ⊂ S− and O ⊂ S+; so both S− ∪ O and S+ ∪ O are connected using
Lemma 7.10. Now since (S− ∪O) ∩ (S+ ∪O)) = O ̸= ∅ it follows that

S = S− ∪O ∪ S+

is connected using Proposition 7.9.

57



7.4 Equivalence relations 7 CONNECTEDNESS

� The ‘harmonic comb’

H = {(x, y) : y = 0, x ∈ (0, 1]} ∪ {(1/n, y) : n ∈ N, 0 ≤ y ≤ 1} ∪ {(0, 1)}

is connected. It is the union of vertical lines, all of which intersect the horizontal line,
plus (0, 1), which is contained in the closure of the vertical lines.

We already observed that connectedness is a topological property. Often more useful in
examples is the resulting fact that the property “T \ {x} is connected for every x ∈ T” is a
topological property: if f : T → S is a homeomorphism then for any y ∈ S the set S \ {y}
is the continuous image of T \ {x} for some x ∈ X.

We can use this to show that certain sets are not homeomorphic. For example:

� [0, 1] is not homeomorphic to a circle: [0, 1/2) ∪ (1/2, 1] is disconnected, but with a
point removed the circle is still connected.

� R is not homeomorphic to R2: (−∞, 0) ∪ (0,∞) is disconnected, but R2 \ {0} (and so
R2 minus any point) is connected (as we observed above).

� [0, 1] is not homeomorphic to a square: again, [0, 1/2) ∪ (1/2, 1] is disconnected, but
the square minus a point is connected.

7.4 Equivalence relations

This subsection is not examinable in itself but helps understanding the next one.
Let X be any set (like the integers Z). A binary relation R on X is simply a certain set

of pairs (x, y) (where x, y ∈ X). For example, the pairs (n,m) for which n divides m; or the
set of pairs (n,m) for which n ≤ m. The notation is either (x, y) ∈ R or xRy.

An equivalence relation on a set X is a binary relation with special properties: it is
reflexive (xRx for all x), symmetric (xRy implies yRx) and transitive (if xRy and yRz then
xRz). For example, for X = Z, consider the binary relation R such that nRm iff n and m
have the same remainder when divided by 5. This is an equivalence relation. Equivalence
relations are usually denoted by ∼, not the letter R.

For an equivalence relation ∼, we can form the equivalence class of an arbitrary x ∈ X,

[x] = {y ∈ X : x ∼ y},

this is the set of all those elements of X that are “equivalent” to x. That is, if ∼ is the
equivalence relation on Z for which n ∼ m iff n and m have the same remainder when
divided by 5, then [3] is the set of all integers whose remainder is 3 when divided by 5. Also,
[0] = [5]. In this example, there are exactly 5 equivalence classes.

7.5 Connected components

We can define an equivalence relation on a topological space T by letting x ∼ y if there is a
connected set C ⊂ T such that x, y ∈ C.

This is clearly reflexive and symmetric; transitivity comes from Theorem 7.11: if x ∼ y
and y ∼ z then x, y ∈ C1, y, z ∈ C2 and C1 ∩ C2 ̸= ∅, so C1 ∪ C2 is connected and
x, z ∈ C1 ∪ C2.
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Definition 7.15. The equivalence classes of ∼ are called the connected components of T .

We have the following:

� the connected component containing x is the union of all connected subsets of T that
contain x;

� connected components are connected (Theorem 7.11);

� connected components are closed (Corollary 7.12);

� connected components are maximal connected subsets of T (i.e. if C is a connected
component and C ⊂ D with D connected then C = D.

Examples: the connected components of (0, 1)∪ (1, 2) are (0, 1) and (1, 2); the connected
components of Q, R \Q, the Cantor set are all points.

Since the continuous image of a connected space is connected, the number of connected
components is a topological property.

7.6 Path-connected spaces

Definition 7.16. If u, v ∈ T a path from u to v is a continuous map φ : [0, 1] → T such that
φ(0) = u and φ(1) = v. A space T is path connected if any two points in T can be joined
by a path in T .

Proposition 7.17. A path-connected space T is connected.

Proof. Fix u ∈ T , and consider any v ∈ T . Then there is a path from u to v, and so
Cv, the image of the map φ is connected (it is the continuous image of [0, 1]). Then T =
{u} ∪

⋃
v∈T Cv, and each Cv contains u, so T is connected using Theorem 7.11.

The converse is in general not true, e.g. the ‘hamonic comb’ is not path connected (and
nor is the topologist’s sine curve, but this is harder to show).

Not

examinable

7.7 Open sets in Rn

In some ‘nice’ situations connected sets are path connected.

Theorem 7.18. Connected open subsets of Rn are path connected.

Before the proof we make two observations.
1. If we have two paths, φ1 from a to b and φ2 from b to c, then we combine them to

give a path from a to c by setting

φ(t) :=

{
φ1(2t), 0 ≤ t ≤ 1/2,

φ2(2t− 1), 1/2 < t ≤ 1;

the function φ is continuous since φ1(1) = φ2(0).
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2. Any open ball in Rn is path connected. Take the ball B(a, ϵ), and x, y ∈ B(a, ϵ). Then
either consider the path that joins x to a and then goes from a to y:

φ(t) :=

{
x+ 2t(a− x) 0 ≤ t < 1/2

a+ (2t− 1)(y − a) 1/2 ≤ t ≤ 1,

or move along a straight line from x to y on the path

φ(t) = (1− t)x+ ty.

It is easy to see that the first path lies entirely in B(a, ϵ); for the second it follows from the
fact that B(a, ϵ) is convex, which we can prove easily by observing that

|[(1− t)x+ ty]− a| = |[(1− t)(x− a) + t(y − a)| ≤ (1− t)|x− a|+ t|y − a| < ϵ.

Proof. Let U be a connected open subset in Rn.
Take u ∈ U and let A be the set of all points in U that can be reached by a path in U .

Let B = U \A; we will show that B is empty by proving that if it is not that A and B form
a partition of U .

First we show that A is open. Take any a ∈ A; since U is open we have B(a, ϵ) ⊂ U for
some ϵ > 0. So there is a path joining a to any x ∈ B(a, ϵ). By combining the path from u
to a with this path from a to x we obtain a path from u to x, so B(a, ϵ) ⊂ A, i.e. A is open.

The set B is also open: for any y ∈ B we have B(y, ϵ) ⊂ U ; if there was a path from u
to z ∈ B(y, ϵ) there would be a path from u to y, so we must have B(y, ϵ) ⊂ B.

Now if B is non-empty we have U = A ∪ B, A ∩ B ∩ U = ∅, A ∩ U ̸= ∅, B ∩ U ̸= ∅.
But U is connected.

Theorem 7.19. Open subsets of Rn have open connected components.

Proof. Let U be an open subset of Rn and C one of its connected components. If x ∈ C
then there exists δ > 0 such that B(x, δ) ⊂ U . But C is the union of all connected subsets
of U that contain x, so B(x, δ) ⊂ C, so C is open.

Theorem 7.20. A subset U of R is open if and only if it is the disjoint union of count-
ably many open intervals, i.e. U =

⋃
j∈J (aj, bj), with the intervals disjoint and J finite or

countably infinite.

Proof. Any union of open intervals is open, so we need to prove that any open set can be
written in this form.

Take any open U ⊂ R and let {Uj}j∈J be the collection of all its connected components,
which are mutually disjoint. We have just shown that they are open; since they are open
and connected, they are open intervals. For each Cj we can choose a rational qj ∈ Cj. Since
the rationals are countable, so are the Cj.
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8 Completeness in metric spaces

8.1 Completeness

Recall that if a sequence (xn) converges in a metric space (X, d) then it is Cauchy, i.e. for
every ϵ > 0 there exists N such that

d(xn, xm) < ϵ for every n,m ≥ N

(see remarks after the statement of Theorem 6.28). A theorem from Analysis guarantees
that any Cauchy sequence in R converges.

Definition 8.1. A metric space (X, d) is complete if any Cauchy sequence in X converges.

It is implicit in the definition that the limit of the sequence must lie in X. So R is
complete, C is complete, but (0, 1) is not complete (the sequence xn = 1 − 1/n converges,
but its limit 1 does not lie in (0, 1)). Since R and (0, 1) are homeomorphic, this shows that
completeness is not a topological property.

Recall that a subset K of a metric space (X, d) is closed if whenever (xn) ∈ K and
xn → x, then x ∈ K (Lemma 3.23).

Proposition 8.2. Suppose that (X, d) is a metric space and that S is a subset of X. If
(S, d|S) is complete then S is a closed subset of X, and if (X, d) is complete and S is closed
then (S, d|S) is complete.

Proof. Suppose that (xn) ∈ S with xn → x. Then (xn) is Cauchy in S, so converges to some
y ∈ S. Since xn, y ∈ S, it follows that d|S(xn, y) = d(xn, y), so xn → y in X, i.e. x = y and
S is closed.

If (xn) is Cauchy in S then (xn) is also Cauchy in X, so converges to some x ∈ X; since
S is closed, x ∈ S, so xn → x in S.

Proposition 8.3. Any compact metric space (X, d) is complete.

Proof. If (xn) is a Cauchy sequence inX then it has a convergent subsequence (since compact
implies sequentially compact in a metric space) with xnj

→ x ∈ X. But if a Cauchy sequence
has a convergent subsequence then the whole sequence converges to x: given any ϵ > 0, find
N such that

d(xn, xm) < ϵ/2 n,m ≥ N

and J such that nJ ≥ N and d(xnj
, x) < ϵ/2 for all j ≥ J . Then for all k ≥ nJ we have

d(xk, x) ≤ d(xk, xnJ
) + d(xnJ

, x) < ϵ/2 + ϵ/2 = ϵ.

8.2 Examples of complete spaces

Note that all our examples will be normed spaces. A normed space is complete if it is
complete as a metric space, i.e. a Cauchy sequence is (xn) such that for every ϵ > 0 there
exists N such that

∥xn − xm∥ < ϵ n,m ≥ N,

and any such sequence should converge to some x ∈ X, i.e. ∥xn − x∥ → 0 as n → ∞.
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Theorem 8.4. Rd is complete.

Proof. Let (x(k))∞k=1 be a Cauchy sequence in Rd. Then for every ϵ > 0 there exists N(ϵ)
such that

∥x(n) − x(m)∥ =

(
d∑

i=1

|x(n)
i − x

(m)
i |2

)1/2

< ϵ for m,n ≥ N(ϵ).

In particular, for each i = 1, . . . , d we have

|x(n)
i − x

(m)
i | < ϵ for m,n ≥ N(ϵ),

so (x
(n)
i )∞n=1 is a Cauchy sequence. Since Cauchy sequences of real numbers converge, x

(n)
i →

xi for some xi ∈ R.
Now set x = (x1, . . . , xd); then

lim
n→∞

∥x(n) − x∥ = lim
n→∞

(
d∑

i=1

|x(n)
i − xi|2

)1/2

= 0,

so x(n) → x.

The above theorem referred to the standard norm but, since all norms on Rd are equiv-
alent, Rd is complete in any norm.

Theorem 8.5. For every 1 ≤ p ≤ ∞, ℓp is complete.

Proof. This is an exercise on Problem Sheet 9.

Theorem 8.6. For any non-empty set X, the space B(X) of bounded real-valued functions
on X, f : X → R, with the ‘sup norm’

∥f∥∞ := sup
x∈X

|f(x)|

is complete.

Not

examinable
Proof. Let (fn) be a Cauchy sequence in B(X). Then for every ϵ > 0 there exists N(ϵ) such
that

∥fn − fm∥∞ = sup
x∈X

|fn(x)− fm(x)| < ϵ for n,m ≥ N(ϵ).

In particular, for each x ∈ X we have

|fn(x)− fm(x)| < ϵ for n,m ≥ N(ϵ), (8)

so (fn(x))
∞
n=1 is a Cauchy sequence in R. Since R is complete, fn(x) converges for each

x ∈ X.
Now we define f : X → R by setting

f(x) = lim
n→∞

fn(x)
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for each x ∈ X. For any ϵ > 0 we have

|fn(x)− f(x)| ≤ ϵ for n ≥ N(ϵ),

letting m → ∞ in equation (8).
Since N(ϵ) does not depend on x this implies (i) that

|fN(1)(x)− f(x)| ≤ 1 for every x ∈ X,

so f is bounded, i.e. an element of B(X) and (ii) that

∥fn − f∥∞ ≤ ϵ for all n ≥ N(ϵ),

i.e. that fn → f in the sup metric.

Theorem 8.7. The space Cb(T ) of all bounded continuous functions from any non-empty
topological space T into R (‘continuous real-valued functions’) is a closed subspace of B(T ),
and hence complete.

Not

examinableProof. Suppose that f ∈ Cb(T ), where the closure is taken in B(T ). Then for any ϵ > 0
there exists fϵ ∈ Cb(T ) such that ∥f − fϵ∥∞ < ϵ.

Now, we will show that for any a ∈ R we have

{x : f(x) > a} =
⋃
ϵ>0

{x : fϵ(x) > a+ ϵ}. (∗)

Indeed, if f(x) > a then we can take ϵ = (f(x)− a)/2 and then

fϵ(x) = f(x)− (f(x)− fϵ(x)) > f(x)− ϵ = a+ ϵ;

while if fϵ(x) > a+ ϵ then

f(x) = fϵ(x)− (fϵ(x)− f(x)) > (a+ ϵ)− ϵ = a.

Now we have (∗), we note that, since each fϵ is continuous, each set in the union on the
right-hand side is open, and so f−1(a,∞) is open.

A similar argument works for {x : f(x) < a}, and continuity of f now follows from
Lemma 5.29, since

{(a,∞), (−∞, a) : a ∈ R}

forms a sub-basis for the open sets of R.

Simpler argument if T is a metric space. Suppose that fn ∈ Cb(T ) and fn → f in the sup
norm.

Take x ∈ X. We show that f is continuous at x. Fix ϵ > 0, and find N such that

∥fn − f∥∞ < ϵ/3 n ≥ N.
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Since fN is continuous at x there exists δ > 0 such that d(y, x) < δ implies that

|fN(x)− fN(y)| < ϵ/3.

It follows that if d(y, x) < δ then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|

≤ ∥f − fn∥∞ +
ϵ

3
+ ∥fn − f∥∞

= ϵ.

Corollary 8.8. If T is non-empty and compact then C(T ) is complete with the maximum
norm

∥f∥∞ = max
x∈T

|f(x)|.

Proof. If f ∈ C(T ) and T is compact then f is bounded, so C(T ) = Cb(T ), and f attains
its bounds, so supx∈T |f(x)| = maxx∈T |f(x)|.

Note that in fact these are all normed spaces. A complete normed space is called a
Banach space.

8.3 Completions

Consider the space C[0, 1] with the L1 norm. We can find a sequence that is Cauchy in the
L1 norm but that does not converge to a function in C[0, 1]. Consider the sequence for n ≥ 2
given by

fn(x) =


0 0 ≤ x < 1/2− 1/n

1− n(1/2− x) 1/2− 1/n ≤ x ≤ 1/2

1 1/2 < x ≤ 1.

Then for n > m we have

∥fn − fm∥L1 =

∫ 1

0

|fn(x)− fm(x)| dx ≤ 1

m
;

so this sequence is Cauchy.
It converges in the L1 norm to the function

f(x) =

{
0 0 ≤ x < 1/2

1 1/2 ≤ x ≤ 1,

since

∥fn − f∥L1 =

∫ 1

0

|fn(x)− f(x)| dx =

∫ 1/2

1/2−1/n

|fn(x)| dx ≤ 1

n
.

Clearly f /∈ C[0, 1]. With some additional arguments, this implies that C[0, 1] with the L1

norm is not complete.
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There is a way of ‘completing’ a space A by ‘adding the missing limits’. There are two
ways of doing this. First recall that a subset A of metric space is dense in X if A = X.

Method 1: Find a complete metric space X that contains A such that A = X. E.g. R is the
completion of Q.

Method 2: Find a complete metric space X and an isometry i : A → Y with Y ⊂ X and
Y = X. R is the completion of Q with i(x) = x or with i(x) = −x.

The advantage of the second method is that we can ‘construct’ X rather than having to
find a space X that already contains A. One can show that completions are unique, in the
sense given any two completions (X, i) and (X ′, i′) there is an isometry j : X → X ′ with
j(i(x)) = i′(x).

One can make an abstract ‘completion’ by using the following result.

Theorem 8.9. Any metric space (X, d) can be isometrically embedded into the complete
metric space B(X).

Proof. Given (X, d), define i : X → B(X) by choosing some a ∈ X and then setting

[i(x)](z) = d(z, x)− d(z, a).

Note that for every z ∈ X we have

|[i(x)](z)| = |d(z, x)− d(z, a)| ≤ d(x, a),

so i(x) ∈ B(X). Since

|[i(x)](z)− [i(y)](z)| = |d(z, x)− d(z, y)| ≤ d(x, y)

and we have equality when z = x or z = y, it follows that

∥i(x)− i(y)∥∞ = d(x, y),

so the map i is an isometry of (X, d) onto a subset of B(X).

Corollary 8.10. Any metric space has a completion.

Proof. Embed (X, d) into B(X) using Theorem 8.9. Then i(X) (with the closure taken in
B(X)) is a closed subset of a complete space, so complete by Proposition 8.2. Clearly i(X)
is dense in i(X).

One can also complete any normed space to find a complete normed space; but the
construction is significantly more involved.

8.4 The Contraction Mapping Theorem

Definition 8.11. A map f : X → X is a contraction if

d(f(x), f(y)) ≤ κ d(x, y), x, y ∈ X,

for some κ < 1.
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Any contraction is continuous: so if xn → x we have f(xn) → f(x) (we will use this in
the proof of the following theorem).

Theorem 8.12 (Contraction Mapping Theorem). Let (X, d) be a non-empty complete metric
space and f : X → X a contraction. Then f has a unique fixed point in X, i.e. there exists
a unique x ∈ X such that f(x) = x.

This is also known as Banach’s Fixed Point Theorem.

Proof. Choose any x0 ∈ X and set xn+1 = f(xn). Then

d(xj+1, xj) ≤ κd(xj, xj−1) ≤ κ2d(xj−1, xj−2) ≤ · · · ≤ κjd(x1, x0),

so if k > j

d(xk, xj) ≤
k−1∑
i=j

d(xi+1, xi) ≤
k−1∑
i=j

κid(x1, x0) ≤
κj

1− κ
d(x1, x0).

It follows that (xn) is a Cauchy sequence in X. Since X is complete, xn → x for some x ∈ X.
Since f is continuous we have f(xn) → f(x). Now take limits on both sides of

xn+1 = f(xn)

to show that x = f(x).
Any such x must be unique, since if f(x) = x and f(y) = y it follows that

d(x, y) = d(f(x), f(y)) ≤ κd(x, y) ⇒ (1− κ)d(x, y) = 0,

so x = y.

As an application we can prove the local existence and uniqueness of solutions of ordinary
differential equations.

Theorem 8.13 (Picard–Lindelöf Theorem). Suppose that f : Rn → Rn is Lipschitz contin-
uous with

|f(x)− f(y)| ≤ L|x− y| x, y ∈ Rn.

Then for any x0 ∈ Rn the differential equation

ẋ = f(x) x(0) = x0

has a unique solution on [−T, T ] for any LT < 1.

Proof. Rewrite the equation in the form

x(t) = x0 +

∫ t

0

f(x(s)) ds.

So x : [−T, T ] → Rn solves the ODE if it is a fixed point of the map

F : C([−T, T ]) → C([−T, T ])
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given by

[F(x)](t) := x0 +

∫ t

0

f(x(s)) ds.

We use the Contraction Mapping Theorem in the space X := C([−T, T ]) with the supremum
metric.

This map F is a contraction on X if LT < 1, since

|[F(x)](t)− [F(y)](t)| =
∣∣∣∣∫ t

0

f(x(s))− f(y(s)) ds

∣∣∣∣
≤
∫ t

0

|f(x(s))− f(y(s))| ds

≤
∫ t

0

L|x(s)− y(s)| ds

≤ LT∥x− y∥∞,

so
∥F(x)−F(y)∥∞ ≤ LT ∥x− y∥∞.

(In this proof, by C([−T, T ]) we meant the space of continuous functions x : [−T, T ] → Rn

in the maximum norm
∥x∥∞ = max

t∈[−T,T ]
|x(t)|.

This is a complete metric space for every n.)

8.5 The Arzelà–Ascoli Theorem

Not

examinable

Definition. Let X be a metric space. A family A of continuous functions X → R is

� equicontinuous at x if for every ϵ > 0 there exists δ > 0 such that

d(x, y) < δ ⇒ |f(y)− f(x)| < ϵ for every f ∈ A;

� equicontinuous if it is equicontinuous at every x ∈ X;

Definition 8.14. Let X be a metric space. A family A of continuous functions X → R is

� uniformly equicontinuous if for every ϵ > 0 there exists δ > 0 such that

d(y, x) < δ ⇒ |f(y)− f(x)| < ϵ for every f ∈ A.

Remark: If X is compact then A ⊂ C(X) is equicontinuous if and only if it is uniformly
equicontinuous; see Problem Sheet 9.

Definition 8.15. We say that a sequence of functions (fn) is uniformly bounded if there is
a real number M such that ∥fn∥∞ ≤ M for all n.
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Theorem 8.16 (Arzelà–Ascoli Theorem). Let X be a compact metric space. Suppose that
the sequence (fn) in C(X) is uniformly bounded and uniformly equicontinuous. Then (fn)
has a subsequence that converges in the maximum norm to a function f ∈ C(X).

Before we prove this theorem, here is an application.

Theorem 8.17 (Peano). Suppose that f : R2 → R is continuous. Then there exists T > 0
such that the differential equation

ẋ(t) = f(t, x(t)), x(0) = x0

has at least one solution for t ∈ (−T, T ).

Not

examinable
Structure of the proof. Assume, for simplicity, that x0 = 0. First we construct “approximate
solutions”. For each positive integer n, let xn : [0,∞) → R be the unique continuous function
that is linear on each of the intervals [i/n, (i+1)/n) such that the (right) derivatives satisfy

ẋn(t) = f
(
i/n, xn(i/n)

)
if t ∈

[
i

n
,
i+ 1

n

)
for every integer i ≥ 0; and x(0) = x0 = 0.

Assume that |f(t, x)| ≤ M if |t| ≤ 1 and |x| ≤ 1. Set T = min(1, 1/M). Then the ap-
proximate solutions xn on [0, T ] are uniformly bounded (by 1) and uniformly equicontinuous
(for every ϵ > 0, δ = ϵ/M works).

By the Arzelà–Ascoli Theorem, (xn) in C([0, T ]) has a subsequence that converges in the
maximum norm. One then shows that the limit is a solution of the differential equation for
t ∈ [0, T ).

Everything after this point is not examinable, as indicated.
Not

examinable
We can split the proof of Theorem 8.16 into three parts, each covered in a separate lemma
below.

Lemma 8.18 (The diagonal subsequence). Let fn : X → R be a uniformly bounded sequence
of functions. Let D = {xk : k = 1, 2, . . .} be a countable subset of X. Then (fn) has a
subsequence (fnj

) such that the sequence of real numbers fnj
(xk) converges (as j → ∞) for

each xk ∈ D.

Lemma 8.19. Every compact metric space contains a countable dense set D = {xk : k ∈ N}.

Lemma 8.20. Let (X, d) be a compact metric space and let D be a dense subset of X. Let
(fn) be a uniformly equicontinuous sequence in C(X) such that fn(x) converges for every
x ∈ D. Then (fn) converges in the maximum norm.

Proof of Theorem 8.16. Since X is compact, there is a countable dense set D ⊂ X by
Lemma 8.19. Since (fn) is uniformly bounded, we can apply Lemma 8.18 to obtain a sub-
sequence (frj)

∞
j=1 such that frj(x) converges for every x ∈ D. Since (fn) and thus (frj) are

uniformly equicontinuous we can apply Lemma 8.20 to conclude that (frj) converges in the
maximum norm.
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Proof of Lemma 8.18. Note that since (fn) is uniformly bounded, the sequence of real num-
bers (fn(x)) is bounded for every x ∈ X.

Since (fn(x1)) is bounded, by the Bolzano–Weierstrass theorem (fn) has a subsequence
(fn1, j

) such that (fn1, j
(x1)) converges. Let S1 be the set of these indices, that is, S1 = {n1, j :

j = 1, 2, . . .} ⊂ N.
Since (fn1, j

(x2)) is bounded (here n1, j ∈ S1), by Bolzano–Weierstrass (fn1, j
) has a subse-

quence (fn2, j
) such that (fn2, j

(x2)) converges. Let S2 = {n2, j : j = 1, 2, . . .}, this is a subset
of S1.

We continue this way. Suppose k − 1 steps have been completed and we already have a
sequence (fnk−1, j

) with the infinite set Sk−1 = {nk−1, j : j = 1, 2, . . .}. Since (fnk−1, j
(xk))

is bounded, by Bolzano–Weierstrass (fnk−1, j
) has a subsequence (fnk, j

) such that (fnk, j
(xk))

converges. Let Sk = {nk, j : j = 1, 2, . . .}. Then

Sk ⊂ Sk−1 ⊂ · · · ⊂ S1 ⊂ N.

This process can be continued forever, for every k ≥ 1.
We now select the “diagonal subsequence”. For each positive integer j, let rj = nj, j, this

is the jth smallest number of Sj. Notice that for each k, at most the first k− 1 terms of the
sequence (frj)

∞
j=1 are not included in the sequence (fnk, j

)∞j=1 since

rj = nj, j ∈ Sj ⊂ Sk if j ≥ k.

Therefore, as fnk, j
(xk) converges, frj(xk) converges too, for every k ≥ 1.

Proof of Lemma 8.19. For each positive integer n the open balls of radius 1/n, {B(x, 1/n) :
x ∈ X}, form an open cover of X. It has a finite subcover consisting of Mn balls

B(xn, 1, 1/n), . . . , B(xn,Mn , 1/n).

Let D be the countable set that contains all these points xn, j (n ≥ 1, 1 ≤ j ≤ Mn).
To show that D is dense, it is enough to prove that D intersects every open ball B(y, r),

where y ∈ X and r > 0. Let n be such that r > 1/n. The point y must be an element of
one of the balls B(xn, j, 1/n), therefore d(y, xn, j) < 1/n < r. Then xn, j ∈ B(y, r) ∩ D, so
B(y, r) ∩D ̸= ∅.

Proof of Lemma 8.20. Let ϵ > 0. By uniform equicontinuity, there is a δ > 0 such that
d(x, y) < δ implies that |fn(x)− fn(y)| < ϵ for all n.

The family of open balls of radius δ/2, {B(y, δ/2) : y ∈ X} is an open cover of the
compact space X. Therefore there exist finitely many such balls B(y1, δ/2), . . . , B(yM , δ/2)
that cover X.

Since D is dense in X there are points xi ∈ D ∩B(yi, δ/2) for 1 ≤ i ≤ M . Since xi ∈ D,
limn→∞ fn(xi) exists, hence there is an integer Ni such that

|fm(xi)− fn(xi)| < ϵ if n,m ≥ Ni.

Let N = max1≤i≤M Ni.
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Let x ∈ X. Then x ∈ B(yi, δ/2) for some i and d(x, xi) ≤ d(x, yi) + d(yi, xi) < δ. By the
triangle inequality, if m,n ≥ N then we have

|fm(x)− fn(x)| ≤ |fm(x)− fm(xi)|︸ ︷︷ ︸
<ϵ

+ |fm(xi)− fn(xi)|︸ ︷︷ ︸
<ϵ

+ |fn(xi)− fn(x)|︸ ︷︷ ︸
<ϵ

< 3ϵ

where we used uniform continuity and the choice of δ for the first and third summands, and
the choice of N for the second summand. Taking maximum over all x ∈ X, we obtain that

∥fm − fn∥∞ = max
x∈X

|fm(x)− fn(x)| ≤ 3ϵ if m,n ≥ N.

This means that (fn) is a Cauchy sequence in the maximum norm (because ϵ > 0 was
arbitrary and N depends on ϵ). Since C(X) is complete, (fn) converges in the maximum
norm.

The Arzelà–Ascoli Theorem can be used to characterise compact subsets of C(X).

Theorem 8.21 (Arzelà–Ascoli Theorem, general form). Let X be a compact metric space.
A subset A of C(X) is compact if and only if it is closed, bounded, and equicontinuous.

Not

examinable
8.6 The Baire Category Theorem

If S is a non-empty subset of a metric space (X, d) we define

diam(S) = sup
x,y∈S

d(x, y).

Note that S is bounded if and only if diam(S) < ∞.

Theorem 8.22 (Cantor’s Theorem). If (X, d) is complete metric space and (Fn) a decreasing
sequence of non-empty closed subsets of X such that diam(Fn) → 0 then

∞⋂
n=1

Fn ̸= ∅.

Proof. For each n ∈ N choose some xn ∈ Fn. Then for all i ≥ n we have xi ∈ Fn. So if
i, j ≥ n we have xi, xj ∈ Fn, so d(xi, xj) ≤ diam(Fn). It follows that (xn) is Cauchy, and so
xn → x for some x ∈ X.

Since each Fn is closed and xi ∈ Fn for all i ≥ n, it follows that x ∈ Fn for each n. So
x ∈ ∩∞

n=1Fn, i.e. the intersection is non-empty.

Recall that A ⊂ (X, d) is dense in X if A = X.
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Theorem 8.23. Let (X, d) be a complete metric space and {Gk}∞k=1 a countable collection
of open dense subsets of X. Then

G :=
∞⋂
k=1

Gk

is dense in X.

A set is called residual if it contains a countable intersection of open dense sets (like G in
the above theorem).

Proof. Take x ∈ X and r > 0; we need to show that B(x, r) ∩G is non-empty.
Since each Gn is open and dense, we can find y ∈ Gn and s > 0 such that

B(x, r) ∩Gn ⊃ B(y, 2s) ⊃ B(y, s).

First choose x1 ∈ X and r1 < 1/2 such that

B(x1, r1) ⊂ B(x, r) ∩G1;

then take x2 ∈ X and r2 < 2−2 such that

B(x2, r2) ⊂ B(x1, r1) ∩G2;

and inductively xn ∈ X and rn < 2−n such that

B(xn, rn) ⊂ B(xn−1, rn−1) ∩Gn.

This yields a sequence of nested closed sets,

B(x1, r1) ⊃ B(x2, r2) ⊃ B(x3, r3) ⊃ · · · . (9)

Since (X, d) is complete, by Cantor’s theorem there exists x0 ∈ X such that

x0 ∈
∞⋂
j=1

B(xj, rj).

Now observe that x0 ∈ B(x1, r1) ⊂ Br(x), and that x0 ∈ B(xn, rn) ⊂ Gn for every n ∈ N.
It follows that x0 ∈ B(x, r) ∩ G, and hence B(x, r) ∩ G is non-empty as claimed and G is
dense in X.

An alternative formulation says that you cannot make a complete metric space from
the countable union of ‘small’ sets. Recall that a subset W of (X, d) is nowhere dense if
W

◦
= ∅. We showed previously that if W is nowhere dense then X \W is open and dense
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(see comments after Definition 5.23): indeed, using Lemma 5.20 if W is nowhere dense then
we have

∅ = (W )◦ = X \ (X \W )

so
X = X \W.

Corollary 8.24. Let {Fj}∞j=1 be a countable collection of nowhere dense subsets of a non-
empty complete metric space (X, d). Then

∞⋃
j=1

Fj ̸= X.

[“A complete metric space is not meagre in itself.”]

A countable union of nowhere dense subsets is called meagre.

Proof. The sets X \ F̄j are a countable collection of open dense sets. It follows that

∞⋂
j=1

X \ F̄j = X \
∞⋃
j=1

F̄j

is dense, and in particular non-empty.

Lemma 8.25. The Cantor set is uncountable.

Proof. Since C is a closed subset of R, it is complete as a metric space. For every x ∈ C there
are points in C arbitrarily close to x. so C \{x} is dense in C. Since {x} is closed this shows
that {x} is nowhere dense. Then we cannot have C =

⋃∞
j=1 xj, so C is uncountable.

(A similar proof can be used to show directly that [0, 1] is uncountable; although this
follows from the above result since C ⊂ [0, 1].)
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Not

examinable
9 Appendices

Everything in the appendix is not examinable.

9.1 The topology of pointwise convergence

This appendix gives an example of a topological space which is Hausdorff but is not metris-
able. It is not examinable.

Let F(X) denote the collection of all real-valued functions onX (i.e. all maps f : X → R).

Definition 9.1. The topology of pointwise convergence on F(X) is the topology Tp with
sub-basis B formed by the sets

{ϕ ∈ F(X) : a < ϕ(x) < b} x ∈ X, a, b ∈ R. (10)

Note that this topology is Hausdorff: suppose that f and g are two elements of F(X)
that are not equal: there exists some x ∈ X such that f(x) ̸= g(x); let ϵ = |f(x) − g(x)|.
The open sets

{ϕ ∈ F(X) : f(x)− ϵ/2 < ϕ(x) < f(x) + ϵ/2}

(which contains f) and

{ϕ ∈ F(X) : g(x)− ϵ/2 < ϕ(x) < g(x)− ϵ/2}

(which contains g) are disjoint.

Lemma 9.2. If (fn) ∈ F(X) then fn → f in the topology of pointwise convergence if and
only if fn(x) → f(x) for every x ∈ X.

Proof. Suppose that fn → f in Tp. Choose any x ∈ X and ϵ > 0; then

U := {ϕ ∈ F(X) : f(x)− ϵ < ϕ(x) < f(x) + ϵ}

is an open set that contains f , so fn ∈ U for all n ≥ N , i.e.

|fn(x)− f(x)| < ϵ for all n ≥ N,

so fn(x) → f(x).
To prove the reverse implication, suppose that fn → f pointwise, and take any open set

U ∈ Tp containing f . Then U is the union of finite intersections of elements of B; choose one
of these finite intersections that contains f ,

V =
n⋂

j=1

{ϕ ∈ F(X) : aj < ϕ(xj) < bj}.
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Now, since for each j = 1, . . . , n we have

f ∈ {ϕ ∈ F(X) : aj < ϕ(xj) < bj},

it follows that aj < f(xj) < bj. Since fn → f pointwise, we can find Nj such that aj <
fn(xj) < bj for all n ≥ Nj. Now take N = maxj=1,...,n Nj, and then fn ∈ V ⊂ U for all
n ≥ N .

Now we show that this topology is not metrisable. To do this, we note that every closed
set in a metrisable space can be written as the intersection of countably many open sets: if
the topology comes from a metric d, then we have

S =
∞⋂
k=1

{
x : d(x, S) <

1

k

}
.

[An intersection of countably many open sets is called a Gδ set.]

Theorem 9.3. The space F [0, 1] with the topology of pointwise convergence is not metrisable.

Proof. First note that {0}, i.e. the function f : [0, 1] → R with f(x) = 0 for every x ∈ [0, 1]
is closed: take any f ∈ F [0, 1] \ {0}. Then f has at least one point x with f(x) ̸= 0; set
ϵ = |f(x)| this is contained in

{ϕ ∈ F(X) : f(x)− ϵ < ϕ(x) < f(x) + ϵ},

which is a subset of F \ {0}.
If the space was metrisable, the set {0} would be the countable intersection of open sets,

i.e. we could find open sets Gk ∈ F [0, 1] such that

{0} =
∞⋂
k=1

Gk.

For each k we know that Gk is the union of finite intersections of sets of the form equation
(10), at least one of which must contain {0}. So taking one of these intersections we have

{0} ∈
m⋂
j=1

{ϕ : aj < ϕ(xj) < bj} ⊂ Gk.

Since we know that {0} is in each of the sets in the intersection, we can find an ϵk > 0 such
that aj ≤ −ϵk < 0 < ϵk ≤ bj for each j [take ϵk = minm

j=1(−aj, bj)], and then we have

{0} ∈
m⋂
j=1

{ϕ : −ϵk < ϕ(xj) < ϵk} ⊂ Gk.
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If we let Ak be the finite set {x1, . . . , xj} then we can write this as

{0} ∈ {ϕ : −ϵk < ϕ(x) < ϵk, x ∈ Ak} ⊂ Gk.

But now the function g : [0, 1] → R defined by setting

g(x) =

{
0 x ∈ Ak, for some k

1 otherwise

is a non-zero element of⋂
k

{ϕ : −ϵk < ϕ(x) < ϵk, x ∈ Ak} ⊂
⋂
k

Gk.

9.2 Product spaces

This is a quick note on products of arbitrary collections of sets and how they are defined as
a set of functions, which is initially quite confusing. It does not address putting a topology
on the product, just how the product is defined.

Let’s start with the product X1 ×X2 of two sets X1 and X2. We are familiar with this
being defined as a set of ordered pairs:

X1 ×X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}.

Similarly, if we have n sets X1,. . . , Xn, we define the product

X1 × · · · ×Xn =
n∏

i=1

Xi

to be a set of ordered n-tuples:

X1 × · · · ×Xn =
n∏

i=1

Xi = {(x1, . . . , xn) : xi ∈ Xi ∀i ∈ {1, . . . , n}}.

(Note that
∏n

i=1 Xi is just notation for X1 × · · · ×Xn, in the same way as we write
∑n

i=1 an
for a1 + · · ·+ an.)

Now suppose we have a collection of sets X1, X2, X3, . . ., indexed by the natural numbers
N. We can define the product of these sets to be a set of sequences:

∞∏
i=1

Xi =
∏
i∈N

Xi = {(x1, x2, x3, . . .) : xi ∈ Xi ∀i ∈ N}

= {(xi)
∞
i=1 : xi ∈ Xi ∀i ∈ N}.

Note that the expression (xi)
∞
i=1 is just a shorthand way of writing (x1, x2, x3, . . .).
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If we have a collection of sets indexed by a countably infinite set, i.e., sets Xi for i ∈ C,
where C is countably infinite, we can use the fact that C is in bijection with N to order the
elements. We can then again define the product

∏
i∈C Xi to be a set of sequences.

Now suppose we have a collection of sets Xi, i ∈ Λ, where Λ is an arbitrary uncountable
set. How can we make sense of ∏

i∈Λ

Xi ?

We might be tempted to write the elements formally as (xi)i∈Λ with xi ∈ Xi but what does
this notation mean?

To make sense of such products over arbitrary collections of sets, we have to take a step
back and reinterpret our earlier examples.

Consider again the product X1 ×X2. We claim that a point (x1, x2) ∈ X1 ×X2 specifies
a function from {1, 2} to X1 ∪ X2. We’ll call this function x : {1, 2} → X1 ∪ X2 and it
is defined by x(1) = x1 and x(2) = y1. If we take another point (y1, y1) ∈ X1, X2, we get
another function, which we’ll call y : {1, 2} → X1 ∪X2, defined by y(1) = y1 and y(2) = y2.
However, these functions must all satisfy a restriction: the value they take at 1 must lie in
X1 and the value they take at 2 must lie in X2. So each (x1, x2) ∈ X1 ×X2 gives a function
x : {1, 2} → X1 ∪X2 such that x(i) ∈ Xi for all i ∈ {1, 2}.

Now let’s go from the other direction. Suppose we have a function x : {1, 2} → X1 ∪X2

such that x(i) ∈ Xi for all i ∈ {1, 2}. This determines a point (x1, x2) ∈ X1 ×X2 by setting
(x1, x2) = (x(1), x(2)).

So we have a natural bijection between X1 ×X2 and the set of functions

{x : {1, 2} → X1 ∪X2 : x(i) ∈ Xi ∀i ∈ {1, 2}}.

Similarly, given sets X1, . . . , Xn, there is a natural bijection between X1 × · · · ×Xn and
the set of functions

{x : {1, . . . , n} → X1 ∪ · · · ∪Xn : x(i) ∈ Xi ∀i ∈ {1, . . . , n}}.

Generalising a bit more, for sets X1, X2, X3, . . ., indexed by N, there is a natural bijection
between

∏
i∈N Xi and the set of functions{

x : N →
⋃
i∈N

Xi : x(i) ∈ Xi ∀i ∈ N

}
.

The bijection is given by mapping (xi)
∞
i=1 to the function x : N →

⋃
i∈N Xi defined by

x(i) = xi for all i ∈ N.
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Now let us return to an arbitrary collection of sets Xi, i ∈ Λ. Given the discussion above,
it is natural to define the product set ∏

i∈Λ

Xi

to be the set of functions {
x : Λ →

⋃
i∈Λ

Xi : x(i) ∈ Xi ∀i ∈ Λ

}
.

We can write an element of this set as (xi)i∈Λ and this means the function x : Λ →
⋃

i∈Λ Xi

defined by x(i) = xi for all i ∈ Λ.

9.3 Product topology and box topology

This note gives a bit more detail about the definitions of the product topology and the box
topology on the product of an infinite collection of topological spaces. We work out both
topologies in the simplest example where they are different. You don’t really need to worry
about the box topology but seeing it helps one to understand why the product topology (for
an infinite collection of sets) is defined as it is.

Let (T1, T1), . . . , (Tn, Tn) be a finite collection of topological spaces. We defined the prod-
uct topology on the product space

T1 × · · · × Tn = {(x1, . . . , xn) : xi ∈ Ti ∀i ∈ {1, . . . , n}}.

to be the topology with basis

B0 = {U1 × · · · × Un : Ui ∈ Ti ∀i ∈ {1, . . . , n}}.

Note:

1. For U1 × · · · × Un ∈ B0 and V1 × · · · × Vn ∈ B0,

(U1 × · · · × Un) ∩ (V1 × · · · × Vn) = (U1 ∩ V1)× · · · × (Un ∩ Vn) ∈ B0,

since each Ui ∩ Vi ∈ Ti. Therefore, B0 is the basis for a topology.

2. The topology defined by the basis is unique.

Now we want to define a topology on the product of an infinite collection of sets. In fact,
there are two topologies we can define but one of these is better than the other.

We can define these topologies on the product of an arbitrary collection of spaces

∏
i∈Λ

Ti =

{
x : Λ →

⋃
i∈Λ

Ti : x(i) ∈ Ti ∀i ∈ Λ

}
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but the ideas will show up clearly if we just consider a countable collection of spaces, indexed
by N.

So suppose we have topological spaces (T1, T1), (T2, T2), (T3, T3), . . . and we want to define
a topology on

T :=
∞∏
i=1

Ti = {(xi)
∞
i=1 : xi ∈ Ti ∀i ∈ Ti}.

The most obvious (and bad) way to define a topology on T is to take the topology with
basis

Bbox :=

{
∞∏
i=1

Ui : Ui ∈ Ti ∀i ∈ N

}
.

Here,
∞∏
i=1

Ui = {(xi)
∞
i=1 : xi ∈ Ui ∀i ∈ Ti}.

As above, you can check the the intersection of two sets in Bbox is still in Bbox, so Bbox is the
basis for a unique topology. This is called the box topology Tbox.

A less obvious approach is to use the projective topology with respect to the projection
maps onto the factors Ti. For each j ∈ N, define the projection map πj : T → Tj by
πi((x)

∞
i=1) = xj. The product topology T is defined to be the smallest (coarsest) topology

that makes all of the maps πj : T → Tj, j ∈ N, continuous.

Let’s see what sort of open sets we get from the continuity of the maps πj. Start with
j = 1. Since π1 is continuous, for every U1 ∈ T1,

π−1
1 (U1) = U1 × T2 × T3 × · · · = U1 ×

∞∏
i=2

Ti ∈ T .

Similarly, since π2 is continuous, for every U2 ∈ T2,

π−1
2 (U2) = T1 × U2 × T3 × · · · = T1 × U2 ×

∞∏
i=3

Ti ∈ T .

And so on: for each j ∈ N and every Uj ∈ Tj,

π−1
j (Uj) =

j−1∏
i=1

Ti × Uj ×
∞∏

i=j+1

Ti ∈ T .

Collecting these sets together, we get

S =
∞⋃
j=1

{
∞∏
i=1

Ui : Ui ∈ Ti ∀i ∈ N and Ui = Ti for i ̸= j

}
.

78
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The product topology is smallest topology which contains these sets, which is the same as
saying that it is the unique topology for which S is a sub-basis.

You should check that the intersection of two sets in S is, in general, not a union of sets
in S and so S is not a basis. However, we can get a basis by considering finite intersections
of sets in S. Such an intersection will have the form

∞∏
i=1

U
(1)
i ∩

∞∏
i=1

U
(2)
i ∩ · · · ∩

∞∏
i=1

U
(n)
i =

∞∏
i=1

(U
(1)
i ∩ U

(2)
i ∩ · · · ∩ U

(n)
i ).

We know that for each k = 1, . . . , n there is at most one value of i for which U
(k)
i ̸=

Ti, so there are at most finitely many values of i (in fact, at most n values) for which

U
(1)
i ∩ U

(2)
i ∩ · · · ∩ U

(n)
i ̸= Ti. So a basis for the product topology is given by

B =

{
∞∏
i=1

Ui : Ui ∈ Ti ∀i ∈ N and Ui = Ti for all except finitely many values of i

}
.

You should note that, for the product of a finite collection of sets, the product topology
defined in the last paragraph is equal to the box topology (and both are equal to the product
topology defined at the start). However, for an infinite collection of sets, the product topology
and the box topology are different.

We claim that the product topology is a better, i.e. more useful, topology than the box
topology. Why? One answer is given by the following:

Tychonov’s Theorem (Theorem 6.14). If (Ti, Ti), i ∈ Λ, are compact topological spaces then
T =

∏
i∈Λ Ti with the product topology is also compact.

This is not true for the box topology (if Λ is infinite) and we’ll see a simple example.
In fact, it is instructive to look at this example to see why the product topology is a better
topology to use.

We’ll again take a countable collection of sets Ti, i ∈ N, but take all the Ti to be the
same set {0, 1} with the discrete topology. So

∞∏
i=1

Ti = {(xi)
∞
i=1 : xi ∈ {0, 1} ∀i ∈ N},

i.e. the set of all sequences of 0’s and 1’s. We looked at this space before, when we called it
X∞, so we’ll continue with that notation. Recall that we can define a metric d∞ on X∞ by

d∞((xi)
∞
i=1, (yi)

∞
i=1) =

∞∑
i=1

1− δxiyi

2i
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(where δij = 1 if i = j and δij = 0 if i ̸= j). In fact, it is a bit nicer to work with the
following metric d:

d((xi)
∞
i=1, (yi)

∞
i=1) =

{
0 if (xi)

∞
i=1 = (yi)

∞
i=1

1
2n−1 if (xi)

∞
i=1 ̸= (yi)

∞
i=1 and n = min{i ∈ N : xi ̸= yi}.

So, for example, if x1 ̸= y1 then d((xi)
∞
i=1, (yi)

∞
i=1) = 1. For every (xi)

∞
i=1, (yi)

∞
i=1 ∈ X∞, we

have
1

2
d((xi)

∞
i=1, (yi)

∞
i=1) ≤ d∞((xi)

∞
i=1, (yi)

∞
i=1) ≤ d((xi)

∞
i=1, (yi)

∞
i=1),

so d and d∞ are Lipschitz equivalent and hence topologically equivalent. Notice that d has
the following two properties:

1. d((xi)
∞
i=1, (yi)

∞
i=1) ≤ 2−n if and only if d((xi)

∞
i=1, (yi)

∞
i=1) < 2−(n−1);

2. if B(x, r) is an open ball in the metric d then B(x, r) = B(x, 2−n), for some n ≥ 0.

Let’s think about the box topology on X∞. Let x = (xi)
∞
i=1. Since each Ti = {0, 1} has

the discrete topology, {xi} is an open set in Ti. Hence

∞∏
i=1

{xi} ∈ Bbox ⊂ Tbox.

But
∞∏
i=1

{xi} = {x},

so sets containing single points are in Tbox. Taking unions, we see that every subset of X∞
is in Tbox, i.e. the box topology is the discrete topology.

We can now see that (X∞, Tbox) is not compact: U = {{x} : x ∈ X∞} is an open cover
for (X∞, Tbox) but there can be no finite subcover as X∞ is an infinite set.

We also see that a sequence x(n) = (x
(n)
i )∞i=1 converges to x = (xi)

∞
i=1 in the box topology

if and only if it is eventually equal to x, i.e. that there exists N ≥ 1 such that x(n) = x for
all n ≥ N . (This is because {x} is an open neighbourhood of x.)

Now let’s contrast this with the product topology on X∞. We claim that the product
topology T is equal to the topology Td induced by the metric d. We will now justify this
claim.

For x = (xi)
∞
i=1 and m ≥ 1, define sets

Cm(x) := {x1} × · · · × {xm} ×
∞∏

i=m+1

Ti.
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These are open sets in the product topology which contain x. Furthermore, we see that

Cm(x) = {y = (yi)
∞
i=1 : xi = yi ∀i ∈ {1, . . . ,m}}

= {y = (yi)
∞
i=1 : d(x, y) ≤ 2−m}

= {y = (yi)
∞
i=1 : d(x, y) < 2−(m−1)} (using property (1) above)

= B(x, 2−(m−1)),

the open ball in the metric d centred at x with radius 2−(m−1). So (using property (2) above)
every open ball for the metric d is open in the product topology. Since the open balls for
the metric d are a basis for Td, we have Td ⊂ T .

Next we prove the reverse inclusion. Let V ∈ T be non-empty and let x ∈ V . Since V is
a union of sets in the basis B for the product topology, we can find a set

Hx =
∞∏
i=1

Ui ∈ B

such that x ∈ Hx ⊂ V . Let m(x) be the largest value of i for which Ui ̸= Ti = {0, 1}. Then

x ∈ Cm(x)(x) ⊂ Hx ⊂ V.

Hence
V =

⋃
x∈V

Cm(x)(x) =
⋃
x∈V

B(x, 2−(m(x)−1)),

so V is open in the topology induced by the metric. Therefore T ⊂ Td. This completes the
proof of the claim.

Finally, let us see what convergence of sequences looks like in X∞ with the product
topology. We see x(n) = (x

(n)
i )∞i=1 converges to x = (xi)

∞
i=1 if and only if for every m ≥ 1

there exists N ≥ 1 such that

n ≥ N =⇒ x
(n)
i = xi ∀i ∈ {1, . . . ,m}.

So, for example, the sequence (of sequences)

x(1) = (1, 1, 1, 1, . . .),

x(2) = (0, 1, 1, 1, . . .),

x(3) = (0, 0, 1, 1, . . .),

...

x(n) = (0, 0, . . . , 0︸ ︷︷ ︸
n−1 terms

1, 1, 1, . . .)

...
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(i.e. x(n) has n− 1 0’s followed by all 1’s) converges to

x = (0, 0, 0, 0, . . .).

9.4 Completeness in compact metric spaces

Definition 9.4. A metric space (X, d) is totally bounded (also called precompact) if for every
ϵ > 0 there is a finite ϵ-net in X, i.e. X can be covered by a finite collection of balls of radius
ϵ:

X ⊂
n⋃

j=1

B(xj, ϵ).

Note that any totally bounded set is bounded. (We have X ⊂
⋃n

j=1B(xj, 1), so for every
x ∈ X we have d(x, x1) < r := 1 + maxj d(x1, xj).) The converse is not true - consider any
infinite set with the discrete metric.

Lemma 9.5. A subspace Y of a metric space (X, d) is totally bounded if and only if for
every ϵ > 0 there is a finite collection x1, . . . , xn ∈ X such that

Y ⊂
n⋃

j=1

B(xj, ϵ).

Proof. Only one direction needs proof (if xj ∈ Y then xj ∈ X).
Given ϵ > 0 find a collection {x1, . . . , xn} such that

Y ⊂
n⋃

j=1

B(xj, ϵ/2).

We can assume that Y ∩B(xj, ϵ/2) ̸= ∅ for each j; otherwise we would just remove the ball
centred at xj from the cover.

Now for each j choose one point yj ∈ Y ∩B(xj, ϵ/2); then

B(xj, ϵ/2) ⊂ B(yj, ϵ),

and so

Y ⊂
n⋃

j=1

B(yj, ϵ)

as required.

Lemma 9.6. A subspace of a totally bounded metric space is totally bounded.
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Proof. If Y ⊂ X and X is totally bounded then for every ϵ > 0 there are {x1, . . . , xn} ∈ X
such that

Y ⊂ X ⊂
n⋃

j=1

B(xj, ϵ),

so Y is totally bounded using Lemma 9.5.

Lemma 9.7. If a subspace Y of a metric space X is totally bounded then so is Y .

Proof. Given ϵ > 0 let {x1, . . . , xn} be an ϵ/2-net for Y . Then this is an ϵ-net for Y , since
given any y ∈ Y there exists x ∈ Y with d(x, y) < ϵ/2 and xi such that d(x, xi) < ϵ/2, so
d(y, xi) < ϵ.

Proposition 9.8. Any sequence in a totally bounded metric space (X, d) has a Cauchy
subsequence.

Proof. Take a sequence (xn) ∈ X.
Since X is totally bounded, it can be covered by finitely many 1/2-balls. So there is

at least one ball B(y1, 1/2) containing infinitely many elements of the sequence (xn). All
elements of this subsequence are within 1 of each other.

Choose n1 such that xn1 ∈ B(y1, 1/2), and let

X1 = {xj : j > n1, xj ∈ B(y1, 1/2)}.

Since X can be covered by finitely many 1/4 balls, so there is one, B(y2, 1/4), say that
contains infinitely many of the points in X1 (and all of these points are within 1/2 of each
other). Choose n2 such that xn2 ∈ B(y2, 1/4) and let

X2 = {xj : j > n2, xj ∈ B(y2, 1/4)}.

Continuing in this way we obtain a subsequence (xnj
) of (xn) that is Cauchy, since xni

∈
B(yj, 2

−j) for all i ≥ j.

Theorem 9.9. A subspace Y of a complete metric space (X, d) is compact if and only if it
is closed and totally bounded.

Proof. If Y is compact then Y is closed by Lemma 6.7 and totally bounded since the open
cover {B(x, ϵ) : x ∈ Y } has a finite subcover.

Conversely, if Y is totally bounded then any sequence in Y has a Cauchy subsequence.
Since X is complete this subsequence converges; since Y is closed the limit of the sequence
lies in Y . So Y is sequentially compact; since (Y, d) is a metric space this implies that Y is
compact.

Theorem 9.10. A subspace Y of a complete metric space is totally bounded iff its closure
is compact.
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Proof. If Y is totally bounded then Y is totally bounded by Lemma 9.7 and so compact by
the previous theorem.

If Y is compact then it is totally bounded by the previous theorem) and so Y is totally
bounded by Lemma 9.6.

9.5 The general Arzelà–Ascoli theorem

The Arzelà–Ascoli Theorem gives a characterisation of compact subsets of C(X), when X
is a compact metric space.

Definition 9.11. A subset S of C(X) is

� equicontinuous at x if for every ϵ > 0 there exists δ > 0 such that

y ∈ B(x, δ) ⇒ |f(y)− f(x)| < ϵ for every f ∈ S;

� equicontinuous if it is equicontinuous at every x ∈ X;

� uniformly equicontinuous if for every ϵ > 0 there exists δ > 0 such that

d(y, x) < δ ⇒ |f(y)− f(x)| < ϵ for every f ∈ S.

Lemma 9.12. If X is compact then S ⊂ C(X) is equicontinuous if and only if it is uniformly
equicontinuous.

Proof. This is an exercise on Problem Sheet 6.

Theorem 9.13. Let X be a compact metric space. A subset A of C(X) is totally bounded
if and only if it is bounded and equicontinuous.

Proof. If A is totally bounded then it is bounded. Since A is totally bounded, for any ϵ > 0
there exist {f1, . . . , fn} such that for every f ∈ A there is an i with

∥f − fi∥∞ < ϵ.

Since each of the fi are uniformly continuous there exists δ > 0 such that for i = 1, . . . , n

d(x, y) < δ ⇒ |fi(x)− fi(y)| < ϵ/3.

Then for any f ∈ A choose j such that ∥fj − f∥∞ < ϵ/3; it follows that if d(x, y) < δ we
have

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|
≤ ∥f − fj∥∞ + |fj(x) + fj(y)|∥fj − f∥∞ < ϵ,

so A is uniformly equicontinuous (and hence equicontinuous).
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Now, assuming that A is bounded and equicontinuous, given ϵ > 0 we want to find a
finite ϵ-net in A. For every x ∈ X use the fact that A is equicontinuous to find δ(x) > 0
such that

y ∈ B(x, δ(x)) ⇒ |f(y)− f(x)| < ϵ/3 for every f ∈ A.

Since X is compact there is a finite set {x1, . . . , xn} such that

X ⊂
n⋃

i=1

B(xi, δ(xi)).

We now make a collection F of elements of A that form a finite ϵ-net. For any {q1, . . . , qn}
with qi ∈ Z for which there exists a g ∈ A with

g(xi) ∈ [qiϵ/3, (qi + 1)ϵ/3]

we choose one such g and add it to F . Since A is bounded there are only finitely many such
choices of {q1, . . . , qn}, so there are only finitely many functions in F .

Now given any f ∈ A for each i there are qi such that

f(xi) ∈ [qiϵ/3, (qi + 1)ϵ/3],

and so there is a g ∈ F such that

g(xi) ∈ [qiϵ/3, (qi + 1)ϵ/3],

which implies that |f(xi)− g(xi)| < ϵ/3 for each i = 1, . . . , n.
Now for each x ∈ X we can find j such that x ∈ B(xj, δ(xj)), and then

|f(x)− g(x)| ≤ |f(x)− f(xj)|+ |f(xj)− g(xj)|+ |g(xj)− g(x)|
≤ ϵ/3 + ϵ/3 + ϵ/3 = ϵ,

from which it follows that ∥f − g∥∞ < ϵ, i.e. A is totally bounded.

Corollary 9.14 (Arzelà–Ascoli Theorem, general form). Let X be a compact metric space.
A subset A of C(X) is compact if and only if it is closed, bounded, and equicontinuous.

One application is the following result.

Theorem 9.15. Suppose that f : R → R is continuous. Then there exists δ > 0 such that
the differential equation

ẋ = f(x), x(0) = x0

has at least one solution for t ∈ (−δ, δ).
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